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ABSTRACT

Energy modelling and optimization studies can facilitate the design of cost-

effective, low-energy buildings. However, this process inevitably involves early as-

sumptions of unknowns such as predicting occupant behaviour, future climate and

econometric assumptions. As presently practised, energy modellers typically do

not quantify the implications of these unknown into performance outcomes. This

paper describes an energy modelling approach to quantify economic risk and bet-

ter inform decision-makers of the economic feasibility of a project. The proposed

methodology suggests how economic uncertainty can be quantified within an op-

timization framework. This approach improves modelling outcomes by factoring

in the effect of variability in assumptions and improves confidence in simulation

results. The methodology is demonstrated using a net-zero energy commercial

office building case-study located in London, ON.
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INTRODUCTION

Energy models are an effective means to explore building performance opportu-

nities at the early-design stage. Coupling energy models with optimization ap-

proaches provides a robust tool to explore and identify cost-effective, deep-energy

savings. However, the building design problem is ill-defined meaning that mod-
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ellers must work with uncertainties such as predicting occupant behaviour, future

climate and econometric assumptions to achieve a performance-optimized build-

ing design. Quantifying the uncertainty of key modelling assumptions can be

influential in the early decision-making process.

This paper focuses on quantifying economic uncertainty—one particular sub-

set of many broad categories of uncertainties in performance-driven building mod-

elling. The goal is to quantify the potential economic risk and better inform

decision-makers of a building’s economic feasibility. Economic indicators are of

particular interest to building owners and developers since they provide some as-

surance that an attractive payback is achievable. As presently practised, modellers

typically do not quantify the implications of risk into performance outcomes.

Economic uncertainties can be defined using several methods: (i) distributions

of historical data such as previous cost estimates, or observed variations in market

inflation; (ii) economic projections originating from analysts and supplier quo-

tations; and (iii) distributions using best-case or worst-case scenarios (extreme

analysis). Specification of economic uncertainties originating from historical data

or supplier quotations are preferred.

An uncertainty analysis estimates the effect of variation in model inputs col-

lectively with regards to a model outcome. Uncertainty analyses are commonly

performed using a Monte Carlo analysis (MCA). A MCA repeatedly samples in-

put distributions to form representative models, which once simulated result in an

outcome distribution that approximates the effect of uncertainty in the model (Liu,

2001). The transformation of model inputs into probability distribution functions

(PDFs) allows for an examination of cumulative changes in an outcome due to

variations in inputs.
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The goal of this paper is to: (i) support an optimization analysis with an esti-

mate of uncertainty in economic performance metrics; (ii) identify and rank which

cost inputs affect models outcomes most significantly; and (iii) exemplify the pro-

posed methodology using a case-study with a performance criterion.

There is limited previous research exploring the robustness of a building de-

sign around a performance criterion. For example, Hopfe et al. (2012) added

uncertainty functionality to an optimization to estimate the robustness of energy

performance. Jelle et al. (2013) developed a robustness classification system for

materials, assemblies and buildings. Hoes et al. (2011) proposed an evolutionary

algorithm selection operator to rank potential designs based on their robustness to

uncertainties in occupant behaviour. This paper evaluates uncertainty as an inte-

gral part of the optimization approach and uses a net-zero energy office building

case-study to demonstrate the process.

Achieving net-zero energy (NZE) in an office design is possible by exploring

load reduction, energy efficiency and generation measures. However, achieving

NZE cost-effectively involves careful consideration of highly-coupled trade-offs

between energy and cost and necessitates optimization techniques. This case-

study demonstrates two key outcomes of modelling studies: (i) a ‘bang-for-buck’

optimization study to ensure that cost-effective design decisions are made, and

(ii) consideration of market variations within an econometric framework to im-

prove investor confidence.

This paper contributes the following: (i) demonstrate how uncertainty analy-

ses can be performed in conjunction with optimization studies; (ii) quantify un-

certainty in the design of a net-zero energy office building; and (iii) identify sig-

nificant economic parameters under a cold-climate context.
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CASE-STUDY: A NET-ZERO ENERGY OFFICE BUILDING

This paper applies the proposed methodology to a net-zero energy office build-

ing. The building is a 3-story office building with 5,030 m2 (54,142 f t2) of gross

floor area with retail space on the first floor. The design specification requires a

mandatory L-shape to allow for pedestrian access to first floor retail space from

both streets, see Figure 1. A primary design strategy is to identify a balance of en-

ergy conservation, energy efficiency and energy generation measures which meet

a combined internal rate of return (IRR) greater than 5% over market inflation.

Figure 1: Rendering of preliminary office building design.

The case-study is part of a 70 acre NZE development located in Southwest-

ern Ontario (S2E, 2014). It is a mixed-use community with 2000 living units,

including semi-detached townhouses, mid-rise and high-rise apartments/condos.

Over 30 unique variables were considered in the office building design prob-

lem, see Table 1. A building design is defined as a unique set of building at-

tributes or characteristics as described by these 31 design variables. Note that

the approach must potentially explore over 1021 unique building designs for this

case-study. This is called the solution space size and is calculated by multiplying
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the number of steps for each variable present in Table 1. However, optimization

algorithms search a small portion of this total solution space to identify optimal

solution sets.

Table 1: Sample of Influential Model Variables for Commercial Office Building

Variable Description Units Start Stop Steps

infil
Infiltration through walls: percentage compared to refer-
ence

% 75 100 8

lpd Light Power Density: percentage compared to reference % 50 100 8

eleceq
Electrical equipment power density: percentage compared
to reference

% 50 100 8

azi Building orientation relative to south degrees -39.4 45 16
base ins Basement insulation m2K/W 0.18 7.04 8

ft2 ◦Fh/Btu 1.0 40.0 8
ceil ins Ceiling insulation m2K/W 3.52 11.40 16

ft2 ◦Fh/Btu 20.1 65.0 16
wall ins Wall insulation m2K/W 3.52 10.57 8

ft2 ◦Fh/Btu 20.0 60.0 8

wintyp n
Window type north [1: Double Glz low-e. 2: Triple Glz
Low-e]. Also variables for east, west, south.

– 1 2 2

wwr s Window to wall percentage south % 10 80 8

wwr n
Window to wall percentage north. Also variables for east,
west

% 10 50 4

use doas
Use a Dedicated Outdoor Air System for ventilation con-
trol

bool 0 1 2

hvac sys HVAC system [1: VAVelec. 2: VAV. 3: PTHP. 4: VRF] – 1 4 4
dhw sys DHW system [1: DHW NG Plant. 2: DHW HP Plant] – 1 2 2
pvbal sc Ballasted PV space scaling factor – 0.1 2.5 8
pvbal ang Ballasted PV angle degrees 0 35 8
pvfrac s PV percentage on south. Also variables for east, west, roof % 0 80 16
pvfrac a PV parking lot array area m2 0 400 8

f t2 0 4306 8

blind type
Blind shading type [1: ExteriorShading; 2: InteriorShad-
ing]

% 1 2 2

blind maxt
Max tolerable temperature in zones before blind deploy-
ment

degC 21 28 8

degF 70 82 8

blind maxsr
Max tolerable solar radiation in zones before blind deploy-
ment; 0=OFF

W/m2 0 1400 8

dhw ld Percent of DHW loads relative to reference % 60 100 8
use nv Use natural ventilation for night cooling bool 0 1 2

Several mechanical system configurations were considered. Mechanical op-

tions included: variable-air-volume distribution with natural gas fired boilers or
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electric heating, package terminal air source heat-pumps (PTHP), distributed water-

source heat-pumps, and a variable refrigerant flow system (VRF) (Raustad, 2013).

A dedicated outdoor air system (DOAS) option was considered to provide fresh-

air to all spaces.

Photovoltaic panels (PV) were the primary electricity generation strategy to

achieve NZE. Building integrated PV is a proven technology which can redirect

excess heat to reduce DHW and heating loads (Bucking et al., 2014a; Candanedo

et al., 2010; Doiron et al., 2011). Building integrated PV was considered on the

south, east and west facades as well as on the roof surface directly or in ballasted

racking. In the event that additional PV was required to achieve an annual energy

balance, it was placed on an racking system beside the building or on adjacent

parking lot structures. The case-study used 16% efficient Canadian Solar panels,

model number CS6P-250 (CanadianSolar, 2014). A panel efficiency degradation

factor of 0.7% per year was specified (Jordan and Kurtz, 2013; Phinikarides et al.,

2014).

METHOD

This section describes both energy and economic models as well as the multi-

objective optimization methodology and the Monte Carlo analysis (MCA).

The uncertainty analysis was achieved by post-processing multi-objective op-

timization results using a Monte Carlo analysis. This process required both an

energy and economic model. The energy model described the incremental energy

savings required to achieve net-zero energy over a reference building. Thus two

energy models were required—a proposed and reference design. ASHRAE stan-

dard 90.1 (ASHRAE, 2010) defined the reference building using current energy
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code best-practices.

Energy Model

The energy model identified the mismatch in energy consumption to energy

generation over an annual period. This information aided in determining the need

for additional technologies to satisfy the building energy balance. The energy

model created sub-hourly load profiles. This information was useful to evaluate

the potential application of various technologies and smart control strategies and

must be emphasized early in the feasibility stage of the project.

A combination of tools were used to create load profiles for various buildings

types: (i) OpenStudio (OS) for drawing geometry and window positions (NREL,

2014); (ii) Windows for specifying glazing spectral properties (LBNL, 2014b);

(iii) Therm for specifying envelope properties (LBNL, 2014a); (iv) EnergyPlus

for energy modelling (Crawley et al., 2000; EnergyPlus, 2014); and (v) a custom

scripting process for technology implementation and modelling best-practices.

Further details regarding the modelling methodology can be found in Bucking

and Cotton (2015).

Economic Model

The economic model used a life-cycle approach to assign incremental costs

with incremental energy savings. Various performance indicators were calculated

using annual cash flow differences and cumulative cash flows over a defined life-

cycle period.

There are four key elements to achieving a cost-effective NZE building: (i) en-

ergy conservation and efficiency measures to reduce operational energy costs,

(ii) net-metering laws which enable the resale of renewable energy at time-of-use
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utility prices, (iii) escalation of fuel prices which accelerates economic savings,

and (iv) upfront financing to absorb the additional capital cost to achieve NZE.

Note that in some cases NZE can be achieved cost-effectively without financing,

however this is not a general rule. Renewable energy purchasing programs, such

as feed-in tariffs, can provide additional financial aid for on-site energy production

and accelerate economic returns.

Operational energy costs were calculated by post-processing hourly Energy-

Plus results. Table 2 shows the time-of-use electricity billing rate (London Hydro,

2015). An electricity escalation rate of 3.0% was used and a demand charge of

$6.83/kW was used with an escalation rate of 3.0% (London Hydro, 2015). A

marginal natural gas rate of 18¢/m3 with an escalation rate of 2.0% was used.

Table 2: Commercial Time of Use Billing

Pricing Schedule Hours TOU Price (¢)

Summer Weekdays 21:00–07:00 off-peak 7.2
07:00–11:00 mid-peak 10.9
11:00–17:00 on-peak 12.9
17:00–21:00 mid-peak 10.9

Winter Weekdays 21:00–07:00 off-peak 7.2
07:00–11:00 on-peak 12.9
11:00–17:00 mid-peak 10.9
17:00–21:00 on-peak 12.9

Weekends and Holidays 00:00–24:00 off-peak 7.2

Equation 1 defines the incremental cost of materials and operational energy

costs over the life-cycle.

g(x) = CNPV + ENPV + RNPV − S NPV − INPV (1)

where: g(x) is the net-present value of all cash-flows; CNPV is the capital costs

of materials and equipment; ENPV is the operational energy costs; RNPV is the re-

9



placement cost for materials and equipment; S NPV is the salvage or residual value

using a linear depreciation method; and INPV is the income generated through

incentives such as feed-in tariffs.

Materials were scheduled for replacement based on an expected serviceable

lifetime (RSMeans, 2014). As per EN 15459: Energy performance of buildings—

economic evaluation procedure for energy systems in buildings, life-cycle costs

were calculated over a 25 year time horizon (EN15459, 2010).

Including replacement costs creates a potential problem—the possibility that

costs are incurred just before the end of the life-cycle which results in a mislead-

ingly large NPV (Anderson et al., 2006). Salvage values were incorporated using

a linear depreciation method (Doty and Turner, 2012).

In some limited cases, initial costs (including technology costs) were financed

over a 10 year timespan with a 5% annual interest rate with payment beginning in

year one. A leveraging rate of 40% was used to finance the added capital cost of

the project.

A feed-in tariff (FIT) incentivized the creation of on-site renewable electricity

generation. This income is intended to provide an attractive return on investment

for building owners to accept the financial cost of additional material and labour

associated with the PV system install. For this study, a tariff of 54.9 ¢/kWh was

used for 20 years of the life-cycle based on a incentive program incentive program

in Ontario (OPA, 2014).

Equation 2 shows the life-cycle cost as net-present value (NPV). This equation

can be solved for NPV or several interesting economic metrics by setting NPV to

zero.
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NPV =

N∑
t=0

Ct

(1 + r̄)t (2)

When set to zero, equation 2 can be solved for the internal rate of return (IRR),

r̄, or tolerable initial cost, Ct, which yields an acceptable IRR. The cost model

compared cash-flows to a investment with 2.14% return based on a 10 year GIC

from 2002 to 2012 and used an annual inflation rate of 2.0% (Bank of Canada,

2009).

It is recommended that a cost model be built by post-processing EnergyPlus re-

sults. Note that life-cycle economic models can be built directly into EnergyPlus,

however, running economic scenarios requires model resimulation which can add

unnecessary analysis time. Economic scenarios using a post-processing approach

expedites uncertainty analyses of cost-modelling assumptions. Another advan-

tage is that maximum flexibility in the programming of financing, utility billing

structures, depreciation methods and material cost specification is attained.

The SQLite interface to EnergyPlus results is an effective means to retrieve

key information for take-off cost analyses. For example, area information of ex-

terior windows and walls is required to estimate envelope costing. Although this

information could be calculated directly from the EnergyPlus input description

file, it is simpler to query using SQLite.

Optimization Method

Figure 2 presents the evolutionary cycle common to an evolutionary algorithm.

In Figure 2, a set of binary genomes, or simplified representations of building de-

signs, form the population. The population is initialized by randomly creating the

specified population size and the fitness of each individual is evaluated; in this pa-
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per an energy simulation program evaluates building energy use. This population

becomes the parent population as it enters the evolutionary cycle. Parent selec-

tion is used to select genomes for variation operators such as recombination and

mutations. The fitness of new individuals, called children, is evaluated. Survivor

selection, or replacement, selects which genomes from the old and new population

will survive in the next generation. The process is repeated until a termination cri-

terion is reached, typically a set number of evolutionary cycles sometimes called

iterations or generations.

initialize

evaluate

parents stop?

selection

variations

children

evolutionary cyclereplacement

evaluate

end EA

no

yes

Figure 2: Overview of an evolutionary algorithm

Table 3 highlights key configuration parameters of the multi-objective evolu-

tionary algorithm configuration used in the case-study. The proposed algorithm

configuration aids in expediting optimization studies while improving optimiza-

tion results (Bucking et al., 2013).

A 79-bit binary representation was necessary to represent the variables ranges
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Table 3: Summary of Multi-Objective Algorithm Configuration

Algorithm Parameter Setting

Representation 71 bit grey-coded binary string
Solution Space Size 2.36 × 1021 unique designs
Objective 1 Net-energy consumption (kWh)
Objective 2 Life-cycle cost over a 25 year period ($)
Population Size 10 growing to 50, i.e. generation gap of 20%
Recombination 50% bit-by-bit uniform, 50% variable uniform
Recombination Prob 100%
Mutation 40% bit-by-bit mutation, 60% differential mutation
Mutation Prob 2.0%
Parent Selection Non-dominated sorting (NSGA-II) (Deb et al., 2002)
Elitism? Yes, built into NSGA-II
No. of Children 10
Survivor Selection Best parents and children, (µ + λ), using crowded com-

parison operator
Diversity Control None required since using NSGA-II

described in Table 1. Binary representations improved algorithm convergence

properties with the negative trade-off of losing resolution on variable ranges. A

differential mutation operator, originally created by Storn and Price (1995), was

adapted to work within a binary evolutionary algorithm. This operator was found

to improve convergence properties of the optimization algorithm (Bucking et al.,

2013).

The elitist non-dominated sorting genetic algorithm (NSGA-II) was selected

as a multi-objective parent selection operator (Deb et al., 2002). This selection op-

erator preserves elite individuals through non-dominance and explicitly maintains

population diversity using crowding distances.

Multi-objective building design problems require population sizes of 40–50

individuals to spread across Pareto fronts; however early objective function eval-
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uations rarely contribute the identification of non-dominated individuals. To re-

duce the number of early energy simulations, an over-selection operator required

only ten new fitness evaluations of building performance. This is referred to as a

generation gap of 25% indicating that 75% of the population was selected from

previous generations (Eiben and Smith, 2003).

A SQLite database (SQLite, 2012) stored design variable sets, algorithm pa-

rameters and building performance metrics such as breakdowns of annual energy

consumption from energy simulations. SQLite allows for concurrent writes from

simultaneous building simulations originating from multi-core and distributed com-

puters. To save computation time, a database query confirmed if an identical rep-

resentation has been simulated previously before calling the energy simulation

tool. SQL queries allowed for the quick recollection of previously simulated de-

sign parameter sets, economic performance indicators and corresponding energy

consumption.

Monte Carlo Analysis

This section describes how to quantify economic risk and better inform decision-

makers of the economic feasibility of a project. The quantification of economic

uncertainty plays a role in improving investor confidence. This methodology

could be further extended to include energy performance indicators as suggested

in Bucking et al. (2014b).

Traditional deterministic models require all variables to be unique prior to

simulation. Probabilistic models require probability distribution functions (PDFs)

to be assigned to input variables. Ideally, input distributions are formed using

historical or measured data. In a Monte Carlo analysis, the probabilistic inputs

are sampled randomly to select individual values, then evaluated in the model to
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form output distributions. Sampling refers to identifying economic parameters by

selecting the value of each input using a probabilistically weighted distribution of

possible values. Several hundred Monte Carlo samples are sufficient to develop

convergence in output distributions (Liu, 2001).

Calculating uncertainty in the economic model required the following steps:

(i) conduct a multi-objective optimization study as described on page 11; (ii) as-

sign distributions using historical data to each input in the economic model as de-

scribed in Table 4; (iii) recreate each energy model using the optimization dataset

for use within the MCA; (iv) conduct the Monte Carlo analysis; (v) calculate

error bars in performance outcomes using a 95% confidence interval; (vi) build

regression model using NPV; (vii) repeat MCA for all building design in the opti-

mization set; and (viii) plot error bars on optimization results.

Figure 3 summarizes how error bars were calculated using a Monte Carlo ap-

proach. PDFs were defined using historical contracts and projected supplier quo-

tations. These distributions were sampled roughly 300 times and evaluated in the

cost model resulting in a distribution of outcomes. A random sampling technique

of input distributions was used for the MCA, based on the recommendations of

previous studies comparing sampling methods (Lomas and Eppel, 1992; Macdon-

ald, 2009). Error bars were then calculated using a 95% confidence interval. A

95% confidence interval implies that error bars span from 5% to 95% of the out-

come distribution. It is very likely that actual economic performance indicators lie

somewhere in the 95% interval. The process was repeated for all building designs

found in the optimization dataset.

The economic model was intentionally over-sampled in the MCA to explore

the convergence properties of economic performance indicators. Larger sample
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Figure 3: Monte Carlo analysis

sizes helped to explore the effect of sample size on outcome distributions. Larger

sample sizes tend to yield more normal distributions, due to the central limit theory

of statistics; otherwise, they do not affect Monte Carlo outcomes.

Table 4 describes a subset of the 70 economic variables used in the analy-

sis. Normal distributions were defined for all variables. Variable types included:

(i) life-cycle economic variables such as inflation and discount rate; (ii) varia-

tions of initial and replacement costs using multipliers; (iii) duration of expected

material serviceable life-times; and (iv) utility and financing rates.

The sensitivity of variables within the MCA was calculated using a gener-

alized linear model (GLM) regression approach. A GLM is a generalized ap-

proach for calculating regression models using generalized least squares (Reddy,

2011). GLMs calculate many interesting statistical metrics such as: (i) student

t-tests and p-values indicating the statistical significance of a variable in the GLM,

(ii) parameter fitting of the regression model to training data; (iii) coefficient of

determination of the fit (R2); and (iv) fitting using linear, higher-order terms and

interacting regressor values. The p-values were used to rank a variables influence

in the Monte Carlo results.

Life-cycle cash-flows were calculated using reference and proposed buildings

with identical economic parameters. Thus, cash-flows were developed using a
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Table 4: Sample of Influential Cost Model Variables for Case-Study

Variable Units Min. Max. No. Steps Mean Description

wall cost – 0.8 1.2 8 1.0 Cost multiplier for wall construction by area
opextshd cost – 0.73 1.17 8 1.0 Cost multiplier for exterior operable shading by area
pvwall cost – 0.75 1.25 8 1.0 Cost multiplier for wall Mounted BIPV by power
pvarr cost – 0.9 1.1 8 1.0 Cost multiplier for ground Mounted PV Array by power
ng rate – 0.85 1.15 8 1.0 Cost multiplier for natural gas by volume
mech vrf peak – 0.8 1.2 8 1.0 Cost multiplier for VRF HVAC System by peak
mech pthp peak – 0.8 1.2 8 1.0 Cost multiplier for PTHP HVAC System by peak
win dgclai – 0.85 1.15 8 1.0 Cost multiplier for Double Glaze Window with Air by area
win dgclar – 0.85 1.15 8 1.0 Cost multiplier for Double Glaze Window with Argon by area
win dgclear – 0.85 1.15 8 1.0 Cost multiplier for Double Glaze low-e Window with Argon by area
win tgclar – 0.80 1.20 8 1.0 Cost multiplier for Triple Glaze Window with Argon by area
win tgclear – 0.80 1.20 8 1.0 Cost multiplier for Triple Glaze low-e Window with Argon by area
cost flr – 0.90 1.10 8 1.0 Cost multiplier for Fluorescent Lights by area
cost led – 0.75 1.25 8 1.0 Cost multiplier for LED Lights by area
mech repl yr 20 30 8 25 Replacement time of HVAC System
repl light yr 20 30 8 25 Replacement time of Fluorescent Lights
repl led yr 20 30 8 25 Replacement time of LED Lights
elecpk rate $/kW 5.46 8.20 8 6.83 Cost of Peak Electricity Demand Charges <500kW
elec on peak $/kWh 0.113 0.140 8 0.126 Electricity Time of Use On-Peak Rate
elec mi peak $/kWh 0.098 0.120 8 0.109 Electricity Time of Use Mid-Peak Rate
elec of peak $/kWh 0.069 0.085 8 0.077 Electricity Time of Use Off-Peak Rate
ng escal % 2.4 3.6 8 1.0 Escalation of Natural Gas Prices
elecpk escal % 2.4 3.6 8 1.0 Escalation of Peak Electricity Demand Charges
elec escal % 2.4 3.6 8 1.0 Escalation of Electricity Rates
infla % 1.75 2.75 8 2.0 Inflation Rate

common set of economic assumptions. As a final step, the difference from the

varied incremental economic model and the baseline economic model were used

for all uncertainty estimates. This ensured that uncertainty is measured from the

varied economic model relative to identical assumptions in the baseline model.

RESULTS AND DISCUSSION

Figure 4 shows the optimization results with error bars originating from the

Monte Carlo analysis. Net-present values were annualized, meaning that net cash-

flows were normalized by the life-cycle period. Error bars varied from 10–25%

of NPV, where the variance depends on the particular building design in question.
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Although Monte Carlo analyses were performed on every design in the optimiza-

tion dataset, results suggest that it might be appropriate to run the variability study

on a reduced set of designs and extrapolate results for the remainder of the set.

Note that economic risk is not positively correlated to decreasing net-energy use

intensity as one might expect. This is likely due to the income generating potential

of PV which moderates the added technology costs throughout the life-cycle.
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Figure 4: Multi-Objective Optimization Results for Commercial Office Case-Study with
Economic Uncertainty (Colored by HVAC System Type)

Figure 4 shows that a NZE design could not be achieved under present market

circumstances without additional financing strategies. If the project were to be

financed, meaning that the 60% of the upfront costs of equipment and technologies

were loaned/leased to the owner, an IRR of 5–10% could be achieved. Since NZE

buildings have lower operational costs, attractive rates of return are possible if

the financing costs plus operation costs are less than reference building operation
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costs.

Table 5 shows the optimal and reference building specifications. The optimal

design used in this table is the design which achieves NZE with the best net-

present value. Note there are a continuum of designs shown in Figure 4 with

optimal trade-offs in energy and economic performance.

Note that the optimal building design was oriented 11 degrees off-south be-

cause of the L-shape building type. A north window to wall ratio of 40% was

selected to increase daylighting access in office spaces. To account for additional

heat-loss, triple-glazed windows were selected. Ventilation was supplied indepen-

dently using a dedicated outdoor air system. A PV array of 400 m2 (4,306 f t2)

was required to make up for the remaining energy consumption.

Each multi-objective optimization run took approximately 5.1 hours (310 min-

utes) of simulation time. For convergence to Pareto fronts, roughly 45 algorithm

iterations or generations were needed. On average, each model evaluation in En-

ergyPlus required 6.2 minutes. Since energy simulations could be parallelized on

multi-core clusters (conducted simultaneously), each population of 10 building

designs was time equivalent to a single energy model evaluation.

The Monte Carlo analysis added two minutes of simulation time per proposed

building design. Each Monte Carlo sample required approximately two seconds

to post-processing of energy simulation results for economic performance indi-

cators. A convergence study indicated the need for at least 300 MCA samples

for convergence of outcome distributions. Samples could be conducted in paral-

lel on multi-core clusters. Note the importance of conducting a cost-analysis by

post-processing EnergyPlus results. The proposed methodology would be pro-

hibitively long if an economic model evaluation required five additional minutes
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Table 5: Optimization Results for Commercial Office

Variable Description Units Ref Prop

infil
Infiltration Through Walls: Percentage Compared to Ref-
erence

% 100.0 75.0

lpd Light Power Density: Percentage Compared to Reference % 100.0 50.0

eleceq
Electrical Equipment Power Density: Percentage Com-
pared to Reference

% 100.0 50.0

azi Building Orientation Relative to South degrees 0.0 11.0
ceil ins Ceiling insulation m2K/W 6.58 11.4

ft2 ◦Fh/Btu 40.0 65.0
wall ins Wall insulation m2K/W 4.15 9.3

ft2 ◦Fh/Btu 24.0 52.0
wintyp n Window Type North – Double Glz low-e Triple Glz Low-e
wintyp e Window Type East – Double Glz low-e Double Glz low-e
wintyp s Window Type South – Double Glz low-e Double Glz low-e
wintyp w Window Type West – Double Glz low-e Double Glz low-e
wwr n Window to Wall Percentage North % 50.0 40.0
wwr e Window to Wall Percentage East % 50.0 10.0
wwr s Window to Wall Percentage South % 50.0 30.0
wwr w Window to Wall Percentage West % 50.0 10.0

use doas
Use a Dedicated Outdoor Air System for ventilation con-
trol

bool No Yes

hvac sys HVAC system – VAVelec VRF
dhw sys DHW system – DHW NG DHW HP
pvbal sc Ballasted PV space scaling factor – 0.0 0.0
pvbal ang Ballasted PV angle degrees 0 0
pvfrac s PV Percentage on South % 0.0 80.0
pvfrac e PV Percentage on East % 0.0 80.0
pvfrac w PV Percentage on West % 0.0 80.0
pvfrac r PV Percentage on Roof % 0.0 80.0
pvarray a PV Array Size m2 0.0 400.0

f t2 0.0 4306
blind type Blind shading type – None Exterior

blind maxt
Max tolerable temperature in Zones before blind deploy-
ment

degC Off 23

degF Off 73

blind maxsr
Max tolerable SolarRadiation in Zones before blind de-
ployment

W/m2 Off 400

dhw ld Percent of DHW Loads relative to reference % 100.0 60.0
use nv Use Natural Ventilation for Night Cooling bool No Yes

f (x) Net-Energy Use Intensity kWh/m2 185.1 -0.2
kBtu/ f t2 58.6 -0.06

g(x) Annualized Net-Present Value $ – -58,800
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of simulation time compared to only a few seconds of post-processing time.

The Monte Carlo analysis was implemented by post-processing optimization

results. Alternatively, the uncertainty analysis could be conducted as part of the

optimization algorithm. Post-processing was preferred since Monte Carlo out-

comes did not provide useful information for optimization algorithm functionality.

However, both implementations are equally applicable.

Table 6 shows the average ranking of variables used in the NPV uncertainty

analysis. The regression analysis typically matched 20 of the 70 cost model in-

puts with p-values less than 5%. The average coefficient of determination was

R2 = 0.993. This table shows the top-ten significant variables in the economic

model. The mechanical system and lighting cost estimations and replacement

times were identified as significant variables in accurate cost estimates. This was

due to the distribution of supplier estimates as defined in Table 4. Not surprisingly,

non-linear variables such as escalation rates, inflation and discount rates were of

significance. However, historical data does exist implying that variabilities can be

appropriately constrained to reduce overall uncertainty. These variables represent

a ranked list for additional effort to reduce economic uncertainty.

Table 6: Ranking of Top-Ten Influential Variables
in Cost Model using NPV

Rank Description Units

1 Mechanical system cost $/kW ($/Btu/h)
2 Inflation rate %
3 Lighting costs (fluorescent vs. LED) $/m2 ($/ f t2)
4 Window material costs $/m2 ($/ f t2)
5 Mechanical system replacement time yr
6 Lighting replacement time yr
7 PV array costs $/W
8 Wall construction cost %
9 Electricity demand charges $/kW
10 Electricity escalation rate %
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CONCLUSION AND FUTURE WORK

This paper proposed a methodology for conducting an uncertainty analyses in

conjunction with optimization studies and demonstrated this process using the

design of a NZE office building. The methodology improves modelling best-

practices by quantifying uncertainty in key economic performance indicators.

This results in techniques which enables building owners and developers to iden-

tify and manage risk ensuring financial returns on energy saving investments.

Future work can be summarized as follows: (i) validate the proposed method-

ology by comparing predicted and actual performance indicators; and (ii) extend

the proposed methodology to include energy performance indicators.

Predicting the energy and economic performance of a building involves inher-

ent uncertainties. Of significance is the quantification of design resiliency to future

climate, occupancy, equipment miscalibration and market fluctuations. Many of

these unknowns can be quantified using historical or measured data which can be

integrated into the modelling process. This marks an important transition away

from deterministic modelling approaches performed on a limited number of de-

sign scenarios to optimized design approaches which considered uncertainties as

an integral part of the modelling process. Energy modelling best-practices need

to better assess the implication of energy modelling assumptions. In exchange

for the added effort, we will be rewarded with greater certainty in our modelling

predictions.
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