
Optimization under Economic Uncertainty: A
Methodology to Determine the Effects of Solar
Variability on Energy and Economic Indicators

ABSTRACT

Energy models are commonly used to examine the multitude of pathways to

improve building performance. As presently practiced, a deterministic approach

is used to evaluate incremental design improvements to achieve performance tar-

gets. However, significant insight can be gained by examining the implications

of modelling assumptions using a probabilistic approach. Analysing the effect of

small perturbations on the inputs of energy and economic models can improve de-

cision making and modeller confidence in building simulation results. This paper

describes a reproducible methodology which aids modellers in identifying energy

and economic uncertainties due to variabilities in solar exposure. Using an op-

timization framework, uncertainty is quantified across the entire simulation solu-

tion space. This approach improves modelling outcomes by factoring in the effect

of variability in assumptions and improves confidence in simulation results. The

methodology is demonstrated using a net-zero energy commercial office building

case-study.
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INTRODUCTION

Building performance modelling is an effective tool to explore trade-offs before

construction using several performance indicators. Coupled with optimization

approaches, designers have the added confidence that they have fully explored

opportunities to reduce building energy use, improve occupant comfort and pro-

ductivity while evaluating upgrades using economic indicators. However, as prac-

titioners we have yet to use the full potential of building performance models to

evaluate the significance of uncertainty in our assumptions. Uncertainty arises

from the many assumptions made early in the energy modelling process. Bet-

ter quantifying the implications and relative significance of uncertain parameters

allows modellers to focus on the assumptions with the most significant perfor-

mance implications. The paper contributes to the ASHRAE 2020 vision which

calls for the development of tools which facilitate the widespread adoption of

market-viable net-zero energy (NZE) buildings, or buildings which produce as

much renewable energy as they consume over a year (ASHRAE, 2008).

This is the second part of a series of papers on optimization studies under

uncertainty. An earlier contribution analyzed how economic uncertainty varies

across the entire search space due to assumptions in cost model inputs such as

inflation rate, utility rates and material costs required to achieve NZE (Bucking,

2016). This paper examines a different uncertainty pathway by quantify the sig-

nificance of solar variability on energy and economic indicators. Uncertainties

originate from estimates and predictions of solar insolation, cloud coverage as

well as renewable energy yields. This paper quantifies variations in passive solar

performance and photovoltaic panels (PV) yields, which may change due to the

duration or intensity of solar radiation or deviations in equipment performance.
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Given that NZE buildings are largely driven by solar resources (both active and

passive) and commonly use PV to offset on-site energy demands, quantifying the

significance of uncertainty propagation is of importance to the building simula-

tion community. Although the methodology focuses on the early-design phases,

it could be equally applied to the detailed and pre-operational phases of design.

The goals of this paper are to: (i) support an optimization analysis with an

estimate of uncertainty in energy use intensity (EUI) and economic performance

metrics due to variabilities in solar radiation and RE yields using PV; (ii) identify

and rank which uncertain inputs affect models outcomes most significantly; and

(iii) exemplify the proposed methodology using a NZE case-study.

Contributions can be summarized as follows: (i) demonstration of how un-

certainty analyses can be performed in conjunction with optimization studies;

(ii) quantification of uncertainty originating from solar variabilities in the design

of a NZE office building; and (iii) proposed methodology to identify and rank

significant model inputs on energy and economic performance indicators under a

cold-climate context.

LITERATURE REVIEW

An uncertainty analysis estimates the effect of variations in model inputs col-

lectively with regards to a model outcome. Uncertainty analyses are commonly

performed using a Monte Carlo analysis (MCA). A MCA repeatedly samples in-

put distributions to form representative models, which once simulated result in an

outcome distribution that approximates the effect of uncertainty in the model (Liu,

2001). The transformation of model inputs into probability distribution functions

(PDFs) allows for an examination of cumulative changes in an outcome due to
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variations in inputs.

Since NZE building performance is driven by passive and active solar design,

variations solar irradiation can have a marked impact on energy and economic

indicators. The following key factors are reviewed with the goal of identifying

variabilities in solar yields: (i) extraterrestrial solar variations, (ii) terrestrial solar

variations, and (iii) variations in PV electricity generation.

Variations in extraterrestrial solar radiation impinging the Earth’s atmosphere

can be caused by: solar activity called the solar cycle, and orbital distances and

axial tilt called Milankovitch cycles. The solar cycle has an average period of

approximately 11 years and is indicated by the presence of sun spots. Although

the underlying mechanisms are not well understood, as the number of sun spots

increase, the total irradiance of the sun is observed to decrease. The magnitude of

these variations can be as large as 9 W/m2 but typically fall in the range of ±1.3

W/m2 or roughly 1% of the solar constant (1367 W/m2). Although extraterrestrial

variations in solar radiation are key contributors to the occurrence of ice-ages on

Earth, they occur over periods of tens of thousands of years and can be ignored

for a typically building’s life-cycle.

Terrestrial variations in solar radiation reaching horizontal surfaces through

the atmosphere can be caused by: aerosols suspended in air, variable cloud cov-

erage, uncertainties in ground based measurements, and influence of suspended

particulate matter. Wild et al. (2015) suggested that climate change will cause

a global decrease in solar irradiation due to the increase of aerosols in the at-

mosphere except for key regions such as China where it is predicted that solar

exposure will increase due to improvements in outdoor air quality.

Thevenard and Pelland (2011) described several variabilities in PV energy
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yields. Uncertainties were estimated for: the power rating of PV modules, losses

due to snow and dirt coverage, and other miscellaneous losses such as inverter

efficiency drift. The cumulative uncertainty in PV yields including solar and elec-

tricity uncertainties was estimated as 8.7% for short-term yields and 7.9% for

long-term yields.

CASE-STUDY: A NET-ZERO ENERGY OFFICE BUILDING

The case-study used in this paper is a 3-story NZE office building with 5,030

m2 (54,142 f t2) of gross floor area with retail space on the first floor. The design

specification requires a mandatory L-shape to allow for pedestrian access to first

floor retail space from both streets, see Figure 1.

Figure 1: Rendering of preliminary office building design.

The case-study is part of a 70 acre NZE development located in Southwest-

ern Ontario (S2E, 2014). It is a mixed-use community with 2000 living units,

including semi-detached townhouses, mid-rise and high-rise apartments/condos.

This cold-climate case-study is particularly interesting in the context of a so-

lar variability analysis since: (i) the climate requires conditioning of outdoor air
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from −30 ◦C (−22 ◦F) to 35 ◦C (95 ◦F) necessitating passive solar strategies such

as appropriate window areas and shading strategies, (ii) an abundance of solar re-

sources in Southwestern Ontario (latitude of 43 ◦) where under or over-estimations

could lead to significance differences in building energy utilization, (iii) the added

factor of building integrated photovoltaics (BIPV) on facade and roof surfaces

and on-site energy generation, and (iv) the building is under construction in 2016

implicating an additional opportunity to validate the proposed methodology.

Over 30 unique variables were considered in the office building design prob-

lem, see Table 1. A building design is defined as a unique set of building at-

tributes or characteristics as described by these 31 design variables. Note that the

approach must potentially explore over 1021 unique building designs for this case-

study. This is called the solution space size and is calculated by multiplying the

number of steps for each variable present in Table 1. However, optimization algo-

rithms search a minuscule fraction of this total solution space to identify optimal

solution sets.

To limit the size of the search space, the variables shown in Table 1 are con-

strained. For example, infiltration through walls is constrained from 100% to

75% with respect to the reference building. This recommendation is based on an

ASHRAE 90.1 infiltration sub-committee (Gowri et al., 2009) which recommends

infiltration reductions of 25% with respect to present energy codes with a potential

upper limit reduction of 42%. However, measured infiltration can vary in the field

up to a factor of ten (Li et al., 2014; Lin and Hong, 2013). Thus, the constrained

values are a subset of a much larger set of values found in existing buildings.

Several mechanical system configurations were considered. Mechanical op-

tions included: variable-air-volume distribution with natural gas fired boilers or
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Table 1: Sample of Influential Model Variables for Commercial Office Building

Variable Description Units Start Stop Steps

infil
Infiltration through walls: percentage compared to refer-
ence

% 75 100 8

lpd Light Power Density: percentage compared to reference % 50 100 8

eleceq
Electrical equipment power density: percentage compared
to reference

% 50 100 8

azi Building orientation relative to south degrees -39.4 45 16
base ins Basement insulation m2K/W 0.18 7.04 8

ft2 ◦F-h/Btu 1.0 40.0 8
ceil ins Ceiling insulation m2K/W 3.52 11.40 16

ft2 ◦F-h/Btu 20.1 65.0 16
wall ins Wall insulation m2K/W 3.52 10.57 8

ft2 ◦F-h/Btu 20.0 60.0 8

wintyp n
Window type north [1: Double Glz low-e. 2: Triple Glz
Low-e]. Also variables for east, west, south.

– 1 2 2

wwr s Window to wall percentage south % 10 80 8

wwr n
Window to wall percentage north. Also variables for east,
west

% 10 50 4

use doas
Use a Dedicated Outdoor Air System for ventilation con-
trol

bool 0 1 2

hvac sys HVAC system [1: VAVelec. 2: VAV. 3: PTHP. 4: VRF] – 1 4 4
dhw sys DHW system [1: DHW NG Plant. 2: DHW HP Plant] – 1 2 2
pvbal sc Ballasted PV space scaling factor – 0.1 2.5 8
pvbal ang Ballasted PV angle degrees 0 35 8
pvfrac s PV percentage on south. Also variables for east, west, roof % 0 80 16
pvfrac a PV parking lot array area m2 0 400 8

f t2 0 4306 8

blind type
Blind shading type [1: ExteriorShading; 2: InteriorShad-
ing]

% 1 2 2

blind maxt
Max tolerable temperature in zones before blind deploy-
ment

degC 21 28 8

degF 70 82 8

blind maxsr
Max tolerable solar radiation in zones before blind deploy-
ment; 0=OFF

W/m2 0 1400 8

dhw ld Percent of DHW loads relative to reference % 60 100 8
use nv Use natural ventilation for night cooling bool 0 1 2
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electric heating, package terminal air source heat-pumps (PTHP), distributed water-

source heat-pumps, and a variable refrigerant flow system (VRF) (Raustad, 2013).

A dedicated outdoor air system (DOAS) option was considered to provide fresh-

air to all spaces.

Photovoltaic panels (PV) were the primary electricity generation strategy to

achieve NZE. Building integrated PV is a proven technology which can redirect

excess heat to reduce DHW and heating loads (Bucking et al., 2014; Candanedo

et al., 2010; Doiron et al., 2011). BIPV was considered on the south, east and

west facades as well as on the roof surface directly or in ballasted racking. In

the event that additional PV was required to achieve an annual energy balance,

it was placed on a racking system beside the building or on adjacent parking lot

structures. The case-study used 16% efficient panels (CanadianSolar, 2014). A

panel efficiency degradation factor of 0.7% per year was specified (Jordan and

Kurtz, 2013; Phinikarides et al., 2014). Energy yields were modelled using the

four-parameter equivalent circuit approximation with a temperature dependency

which affected PV yields (DOE, 2011).

METHOD

This section describes energy and economic models as well as the Monte Carlo

methodology. The proposed methodology can quantify uncertainties in energy

and economic building indicators using probable variations in solar radiation and

electrical equipment performance.

The uncertainty analysis was achieved by post-processing multi-objective op-

timization results using a Monte Carlo analysis. This process required both an

energy and economic model. The energy model described the incremental energy
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savings required to achieve NZE over a reference building. Thus two energy mod-

els were required—a proposed and reference design. ASHRAE standard 90.1-

2010 (ASHRAE, 2010) defined the reference building using current energy code

best-practices.

The proposed methodology links in the following manner: (i) energy model

definition of building performance; (ii) use of optimization algorithm to exhaus-

tively search through all design permutations; (iii) input distributions define un-

certainties in key decision variables; (iv) a Monte Carlo analysis samples input

distributions to examine the global effect of uncertainties; and (v) statistical re-

gression models are used to rank decision variables. These elements are further

discussed in the following sections.

Energy Model

The energy model identified the mismatch in energy consumption to energy

generation over an annual period. This information aided in determining the need

for additional technologies to satisfy the annual energy balance. The energy model

created sub-hourly load profiles with 15 minute time-steps. This information was

useful to evaluate the potential application of various technologies and must be

emphasized early in the feasibility stage of the project.

The proposed methodology requires a full building model to quantify the un-

certainties in passive solar and renewable energy generation using BIPV. Thus the

model must characterize the total surface areas where PV could be placed such

as roofs, walls and in racking on or beside the building. If the objective were

to quantify only passive solar performance, a smaller building model such as an

office space could be a viable alternative to a full building model which requires

additional simulation time.

10



A combination of tools were used to create building load profiles: (i) Win-

dows for specifying glazing spectral properties (LBNL, 2014b); (ii) Therm for

specifying envelope properties (LBNL, 2014a); (iii) EnergyPlus for energy mod-

elling (Crawley et al., 2000; DOE, 2014); and (iv) a custom scripting process for

technology implementation and modelling best-practices. Further details regard-

ing how the modelling methodology can be used for other building archetypes and

community simulation studies can be found in Bucking and Cotton (2015).

Economic Model

The economic model used a life-cycle approach to associate incremental costs

to incremental energy savings. Various performance indicators were calculated

using annual cash flow differences and cumulative cash flows over a defined life-

cycle period.

There are four key elements to achieve NZE cost-effectively: (i) energy con-

servation and efficiency measures to reduce operational energy costs, (ii) net-

metering laws which enable the real-time sale of renewable energy at time-of-

use utility prices, (iii) escalation of fuel prices which accelerates economic sav-

ings, and (iv) upfront financing to distribute the upfront capital cost to achieve

NZE across the life-cycle. Note that in some cases NZE can be achieved cost-

effectively without financing, however this is not a general rule. Renewable en-

ergy purchasing programs, such as feed-in tariffs, can provide additional financial

aid for on-site energy production and accelerate economic returns.

Operational energy costs were calculated by post-processing hourly Energy-

Plus results. Table 2 shows the time-of-use electricity billing rate (London Hydro,

2015). An electricity escalation rate of 3.0% was used and a demand charge of

$6.83/kW was used with an escalation rate of 3.0% (London Hydro, 2015). A
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marginal natural gas rate of 18¢/m3 with an escalation rate of 2.0% was used.

Note that all monetary amounts refer to Canadian dollars (CAD).

Table 2: Commercial Time of Use Billing

Pricing Schedule Hours TOU Price (¢/kWh)

Summer Weekdays 21:00–07:00 off-peak 7.2
07:00–11:00 mid-peak 10.9
11:00–17:00 on-peak 12.9
17:00–21:00 mid-peak 10.9

Winter Weekdays 21:00–07:00 off-peak 7.2
07:00–11:00 on-peak 12.9
11:00–17:00 mid-peak 10.9
17:00–21:00 on-peak 12.9

Weekends and Holidays 00:00–24:00 off-peak 7.2

Equation 1 defines the incremental cost of materials and operational energy

costs over the life-cycle using net-present values (NPV).

g(x) = CNPV + ENPV + RNPV − S NPV − INPV (1)

where: g(x) is the net-present value of all cash-flows; CNPV is the capital costs

of materials and equipment; ENPV is the operational energy costs; RNPV is the re-

placement cost for materials and equipment; S NPV is the salvage or residual value

using a linear depreciation method; and INPV is the income generated through

incentives such as feed-in tariffs.

Materials were scheduled for replacement using an expected serviceable life-

time (RSMeans, 2014). As per EN 15459: Energy performance of buildings—

economic evaluation procedure for energy systems in buildings, life-cycle costs

were calculated over a 25 year time horizon (EN15459, 2007). Longer time hori-

zons were not considered as the proposed building upgrades consistently had pay-

backs within this timeframe.
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Including replacement costs creates an additional challenge—the possibility

that costs are incurred just before the end of the life-cycle which results in a mis-

leadingly large NPV (Anderson et al., 2006). Salvage values were incorporated

using a linear depreciation method (Doty and Turner, 2012). This ensured that

materials replaced late in the life-cycle were effectively resold in the final year.

A feed-in tariff (FIT) incentivized the creation of on-site renewable electricity

generation. This income is intended to provide an attractive return on investment

for building owners to accept the financial cost of additional material and labour

associated with the PV system install. For this study, a tariff of 54.9 ¢/kWh was

used for 20 years of the life-cycle based on an incentive program incentive pro-

gram in Ontario (OPA, 2014). As of June 21, 2016, this incentive was reduced

to 31.4 ¢/kWh in Ontario to account for the improved economic viability of PV

systems.

Equation 2 shows a key performance indicator called the net-present value.

This equation can be solved for NPV or several interesting economic metrics by

setting NPV to zero.

NPV =

N∑
t=0

Ct

(1 + r̄)t (2)

When set to zero, equation 2 can be solved for the internal rate of return (IRR),

r̄, or tolerable initial cost, Ct, which yields an acceptable IRR. The cost model

compared cash-flows to an investment with 2.14% return based on a 10 year GIC

from 2002 to 2012 and used an annual inflation rate of 2.0% (Bank of Canada,

2009).

It is recommended that a cost model be built by post-processing EnergyPlus

results. Note that life-cycle economic models can be built directly into Energy-
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Plus, however, running economic scenarios requires model resimulation which

can add unnecessary analysis time. Decoupling energy and economic models en-

ables the expedited evaluation of economic scenarios. Another advantage is that

maximum flexibility in the programming of financing, utility billing structures,

depreciation methods and material cost specification is attained.

The SQLite interface to EnergyPlus results is an effective means to retrieve key

information for take-off cost analyses. For example, area information of exterior

windows and walls is required to estimate envelope costing. Similarly, mechan-

ical system initial costs were calculated using cost per peak load. For example,

adding insulation not only reduced operational energy costs but also reduced the

initial size and thus cost of mechanical equipment. RSMeans data was used when

manufacturer cost data was not available (RSMeans, 2012, 2014). A price point

of $3.0 per watt was used for a ground mounted PV system. BIPV was priced at

$2.3 per watt since it eliminated the need for an exterior finish.

Optimization Method

Figure 2 presents the evolutionary cycle common to an evolutionary algo-

rithm (EA). In Figure 2, a set of binary genomes, or simplified representations

of building designs, form the population. The population is initialized by ran-

domly creating the specified population size and the fitness of each individual is

evaluated; in this paper an energy simulation program evaluates building energy

use. This population becomes the parent population as it enters the evolutionary

cycle. Parent selection is used to select genomes for variation operators such as

recombination and mutations. The fitness of new individuals, called children, is

evaluated. Survivor selection, or replacement, selects which genomes from the old

and new population will survive in the next generation. The process is repeated
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until a termination criterion is reached, typically a set number of evolutionary

cycles sometimes called iterations or generations.

initialize

evaluate

parents stop?

selection

variations

children

evolutionary cyclereplacement

evaluate

end EA

no

yes

Figure 2: Overview of an evolutionary algorithm

Table 3 highlights key configuration parameters of the multi-objective evolu-

tionary algorithm configuration used in the case-study. The proposed algorithm

configuration aids in expediting optimization studies while improving optimiza-

tion results (Bucking et al., 2013).

A 79-bit binary representation was necessary to represent the variables ranges

described in Table 1. Binary representations improved algorithm convergence

properties with the negative trade-off of losing resolution on variable ranges. A

differential mutation operator, originally created by Storn and Price (1995), was

adapted to work within a binary evolutionary algorithm. This operator was found

to improve convergence properties of the optimization algorithm (Bucking et al.,

2013).
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Table 3: Summary of Multi-Objective Algorithm Configuration

Algorithm Parameter Setting

Representation 71 bit grey-coded binary string
Solution Space Size 2.36 × 1021 unique designs
Objective 1 Net-energy consumption (kWh)
Objective 2 Life-cycle cost over a 25 year period ($)
Population Size 10 growing to 50, i.e. generation gap of 20%
Recombination 50% bit-by-bit uniform, 50% variable uniform
Recombination Prob 100%
Mutation 40% bit-by-bit mutation, 60% differential mutation
Mutation Prob 2.0%
Parent Selection Non-dominated sorting (NSGA-II) (Deb et al., 2002)
Elitism? Yes, built into NSGA-II
No. of Children 10
Survivor Selection Best parents and children, (µ + λ), using crowded com-

parison operator
Diversity Control None required since using NSGA-II

The elitist non-dominated sorting genetic algorithm (NSGA-II) was selected

as a multi-objective parent selection operator (Deb et al., 2002). This selection op-

erator preserves elite individuals through non-dominance and explicitly maintains

population diversity using crowding distances.

Multi-objective building design problems require population sizes of 40–50

individuals to spread across Pareto fronts; however early objective function eval-

uations rarely contribute the identification of non-dominated individuals. To re-

duce the number of early energy simulations, an over-selection operator required

only ten new fitness evaluations of building performance. This is referred to as a

generation gap of 25% indicating that 75% of the population was selected from

previous generations (Eiben and Smith, 2003).

A SQLite database (SQLite, 2012) stored design variable sets, algorithm pa-

16



rameters and building performance metrics such as breakdowns of annual energy

consumption from energy simulations. SQLite allows for concurrent writes from

simultaneous building simulations originating from multi-core and distributed com-

puters. To save computation time, a database query confirmed if an identical rep-

resentation has been simulated previously before calling the energy simulation

tool. SQL queries allowed for the quick recollection of previously simulated de-

sign parameter sets, economic performance indicators and corresponding energy

consumption.

Monte Carlo Analysis

This section describes how to quantify and propagate solar variabilities us-

ing the previously described energy and economic models. The quantification

of uncertainties can improve client and practitioner confidence that the proposed

passive and active solar design aspects are robust to variations in solar exposure.

Traditional deterministic models require all variables to be unique before sim-

ulation. Probabilistic models require probability distribution functions (PDFs) to

be assigned to input variables. Ideally, input distributions are formed using pre-

viously measured data. In a Monte Carlo analysis, the probabilistic inputs are

sampled randomly to select individual values, and then evaluated in the model to

form output distributions. Sampling refers to identifying selecting values of in-

put parameters, shown in Table 4, from a probabilistically weighted distribution

of possible values. Typically, several hundred Monte Carlo samples are sufficient

to develop convergence in output distributions (Liu, 2001). The exact number of

required samples necessitates a statistical power analysis.

The following parameters were varied as part of a solar variability study, see

Table 4. The variable, SR vari, combines uncertainty in long-term horizontal in-
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solation and year to year climate variability. The uncertainty in PV efficiency and

power rating represents discrepancies in PV efficiency and estimations of solar

radiation in the plane of the array. Finally, the PV misc variable represents mis-

cellaneous losses due to soiling (dirt/snow), maximum power point tracking and

inverter efficiency drifting.

Table 4: Uncertain variables included in solar variability study

Variable Description Distribution Value

SR vari Uncertainty in solar radiation data Normal 6.28%
PV eff Uncertainty in power rating and efficiency of PV modules Normal 4.24%
SR shade Uncertainty in shading effecting passive solar performance Normal 2.50%
PV misc Miscellaneous uncertainty in PV/Inverter Performance Normal 6.02%

Logically, one might expect some one-sided PDFs instead of the two-sided

distributions shown in Table 4. For example, it would be unusual for PV and

inverter efficiencies to exceed their rated values. In the case-study, photovoltaic

yields were scaled down to match energy yields from monitored solar farms. Scal-

ing factors were equally applied to PV areas, cell efficiencies and inverter effi-

ciencies to match an annual performance of approximately 1250 kWh/kW at a

45 degree slope. Thus, it makes sense that values could exceed their scaled rated

values and normal distributions were an appropriate choice to model the effect of

variations of electrical equipment performance.

The solar and electrical equipment variabilities were implemented by modify-

ing the climate file (EPW) and model input description files (IDF) directly. Since

the economic model uses incremental costs over a reference building, both the

reference and proposed model required resimulation after changes were made to

the climate data. This step was essential as the cash-flow diagram representing the

reference building is no longer valid with modified climate data.
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The proposed methodology required the following steps: (i) conduct a multi-

objective optimization study; (ii) assign distributions to input parameters as de-

scribed in Table 4; (iii) recreate each energy model using the optimization dataset

for use within the MCA; (iv) conduct the Monte Carlo analysis ensuring that

both the reference and proposed energy models are resimulated for each sam-

ple; (v) calculate error bars in EUI and NPV performance outcomes using a 95%

confidence interval; (vi) build regression model using energy and economic per-

formance indicator; (vii) plot error bars with optimization results.

Figure 3 summarizes how error bars were calculated using a Monte Carlo ap-

proach. Input distributions were sampled 300 times and evaluated in the energy

and cost models resulting in two outcome distributions. A random sampling tech-

nique of input distributions was used for the MCA, based on the recommendations

of previous studies comparing sampling methods (Lomas and Eppel, 1992; Mac-

donald, 2009). Error bars were calculated using a 95% confidence interval. A

95% confidence interval implies that error bars span from 2.5% to 97.5% of the

outcome distribution, see Figure 3. It is very likely that actual energy and eco-

nomic performance indicators lie somewhere in the 95% confidence interval. The

process was repeated for all building designs found in the optimization dataset.

Figure 3: Monte Carlo analysis
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The sensitivity of variables within the MCA was calculated using a linear

model with ridge regression (LM). LMs can calculate many interesting statistical

metrics such as: (i) student t-tests and p-values indicating the statistical signif-

icance of a variable in the LM, (ii) parameter fitting of the regression model to

training data; (iii) coefficient of determination of the fit (R2); and (iv) fitting us-

ing linear, higher-order terms and interacting regressor values. The p-values were

used to rank a variables influence in the Monte Carlo results.

RESULTS AND DISCUSSION

As presently implemented, evaluating the energy and economic impacts of so-

lar variabilities is not computationally efficient and required weeks of simulation

time. As a first step, an optimization study is required before proceeding with the

MCA study. The optimization study and formation of the Pareto front can be ac-

complished in 6–8 hours using a 6-core desktop computer. Roughly twelve energy

simulation were conducted simultaneously with each model evaluation requiring

ten minutes to complete both the reference and proposed designs. However, the

MCA study required over five weeks of simulation time. For each of the 500

buildings identified in the optimization study, see Figure 4, the Monte Carlo stud-

ies required an additional 300 sampling simulations to establish uncertainty in the

input parameters. Since model evaluations are independent of each other, this

suggests that the problem could be further parallelized to reduce simulation time.

The analysis for a cold-climate commercial office case-study found that un-

certainty in EUI varied between 1.5–5.0 kWh/m2 (0.5–1.6 kBtu/ f t2) and annu-

alized NPV from 2,000–8,000 dollars (CAD) using a 95% confidence interval,

see Figure 5. Uncertainty increased slightly as the solution space converged to-
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Figure 4: Multi-Objective Optimization Results for Commercial Office Case-Study with
Economic Uncertainty (Colored by HVAC System Type)

wards optimal solutions. Logically, this can be rationalized that optimal designs

are more highly tuned for passive and active solar utilization and thus should be

more sensitive to solar input variations.
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Figure 5: Error bar height versus Energy Use Intensity: Propagated uncertainty in NPV
and EUI due to Solar Variations

CONCLUSION AND FUTURE WORK

This paper provides a methodology for quantifying the propagation of uncer-

tainty both in energy and economic models due to variations in solar variabilities.

This methodology contributes to the ASHRAE 2020 vision by building modeller

confidence in simulation results (ASHRAE, 2008). The approach used an opti-

mization algorithm to ensure the solution space was fully explored. Uncertainty

arised from several pathways including: (i) uncertainty in solar radiation used in
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a climate file, (ii) uncertainty in equipment performance which affects renewable

energy yields, and (iii) uncertainty in shading of PV modules. This is an improve-

ment over typical modelling approaches which do not consider the propagation of

modelling assumption in energy or economic models.

The case-study found that the uncertainty in EUI and annualized NPV varied

slightly while considering variations in solar radiation and PV equipment perfor-

mance. Furthermore, uncertainty increased as the algorithm converged towards

optimal solutions. In the context of a building with an EUI of 200 kWh/m2 (63.4

kBtu/ f t2), a variation of 1.5–5.0 kWh/m2 (0.5–1.6 kBtu/ f t2) may seem insignif-

icant. However, from the perspective of a building or a community which aims

to achieve a renewable energy balance, accounting for variations in solar yields

could add value to the decision making process. The methodology proposed in

this paper could inform designers on how robust proposed designs are to varia-

tions in solar radiation enabling added measures to ensure buildings and energy

systems perform as expected.

This analysis is not computationally or time efficient to reproduce in regular

practice. Five weeks of simulation was required to produce the results shown in

this paper after the methodology was completed. Also, since the results are reflec-

tive of a single case study it is too soon to make generalizations about the nature

of building simulation and uncertainty studies. Although the effects of uncertainty

were relatively small, these preliminary results should not deemphasize the signif-

icance of conducting studies which test modelling assumptions. If anything, the

results should give modellers additional confidence that solar variabilities will not

significantly affect energy and economic performance outcomes.

Future work can be summarized as follows: (i) expedite the proposed method-
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ology from months to days or hours so it can be adopted in industry practice,

(ii) extend the analysis to include other case studies and climate zones to assess

if it is possible to make further generalizations about the effects of uncertainty

pathways; (iii) extend the methodology to include other modelling assumptions

such as occupancy schedules or HVAC equipment performance; (iv) validate the

proposed methodology by comparing predicted and actual performance indicators

in the context of solar variabilities; and (v) extend the proposed methodology to

include other performance indicators such as comfort and embodied carbon.
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