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In building performance simulation, understanding the potential for parameter variations to cause a dispro-

portionately large change in a performance metric is an important aspect of the modelling and design process.

This is especially true if the proposed building is expected to meet a performance target such as net-zero

energy consumption. In the context of this paper, variations refer to design modifications which lead to large

changes in a performance metric. This paper proposes a methodology to identify influential variations around

a performance criterion. This methodology aids in the understanding of possible discrepancies between pre-

dicted and realized building performance. A net-zero energy house case-study demonstrates the methodology.

A variability analysis of the case-study indicated that combinations of variations caused energy consumption

to be larger than on-site generation in 20% of variational scenarios. A back-tracking search identified that 8 of

26 variables were responsible for significant changes in net-energy consumption. In particular, energy-related

occupant behaviour, solar orientation, and variables related to the sizing of a roof-based photovoltaic system

can significantly influence net-energy consumption. The case-study helped quantify two optimal approaches for

passive solar design—one relying on high insulation levels and lower window areas, and the other relying on

good insulation levels and large window areas.
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1. Introduction

1.1 Background

Creating a net-zero energy (NZE) building, or a building that generates as much renewable

energy on-site as it consumes over a year (Torcellini et al., 2006), is a challenging task. Pivotal

design decisions to reduce building energy consumption are made within a narrow time frame

before the solidification of the final design. These design-stage decisions commit 80–90% of a

building’s life-cycle operational energy demand (Ramesh et al., 2010; UNEP-SBCI, 2007).

Designing a NZE building requires a systems level approach where all aspects are considered

as an interacting whole. This requires designers to balance energy efficiency and conservation

opportunities against renewable energy generation. For example, trade-offs between insulation
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levels, building layout and massing, orientation, glazing properties and sizing, natural ventila-

tion, daylighting, renewable energy integration and HVAC system selection and sizing must be

considered before the architectural design is finalized. Consideration later in the decision process

represents a missed opportunity to optimize building performance. However, some modifications

to early designs may be required. Potentially, these changes can affect energy consumption in

unpredictable ways due to breakages in system level interactions.

The objective of this paper is to propose a methodology which estimates the effect of varia-

tions around a performance criterion. The proposed methodology identifies and ranks variations

which most significantly affect a desired performance goal. This added simulation step can in-

form designers on how robust their design is to variations in usage and construction and aids

in understanding potential discrepancies between predicted and realized building performance.

A case-study demonstrates the methodology by identifying system level variations which signifi-

cantly affect the net-energy consumption of a net-zero energy house (NZEH). As discussed later,

such information could be used to streamline quality control processes. Although a residential

case-study is used, the methodology equally applies to commercial and industrial building types.

1.2 Review of Uncertainty, Sensitivity and Optimization Techniques in Building

Simulation

Kim and Augenbroe (2013) defined several areas of uncertainty in building simulation research:

(i) statistical uncertainty or uncertainty which can be estimated using historical data. Examples

are variations in climate, exterior temperatures, solar radiation and cloud coverage; (ii) uncer-

tainty caused by discrepancies in the model and the as-built building; (iii) measurement errors

such as thermal or optical proprieties of building materials; and (iv) statistical uncertainty where

no historical data exists. Examples include occupant behaviour such as occupancy, utility us-

age, window operation and conditioning schedules. This paper explores the effect of variations

caused by discrepancies in the model and the as-built building. Causes of such variations could

include: (i) early appraisal of unknown and influential model inputs, such as energy related oc-

cupant behaviour; (ii) late-stage design modifications; and (iii) modifications to a design due to

unavailable or less expensive building materials.

Hopfe and Hensen (2011) suggested several additional benefits of performing an uncertainty

and sensitivity analysis: (i) parameter screening to reduce model complexity; (ii) analysis of

model robustness and validation; (iii) quality assurance measures to identify sensitivity of spec-

ifications; and (iv) decision support analysis.

An uncertainty analysis estimates the effect of variations in inputs collectively with regards to

an output. A common technique to perform an uncertainty analysis is a Monte Carlo analysis



January 25, 2018 8:22 Journal of Building Performance Simulation jbps-tf

Journal of Building Performance Simulation 3

(MCA). A MCA repeatedly samples input distributions to form representative designs, which

once simulated result in an outcome distribution that approximates the effect of uncertainty in

the model (Liu, 2001). The decomposition of model inputs into probability distribution functions

(PDFs) allows for an examination of cumulative changes in an outcome due to variations in

inputs. Sampling refers to the formation of a representative design by selecting the value of each

model input using a probabilistically weighted distribution of possible values. A limitation of a

MCA is that it cannot attribute the significance of individual parameter variations on model

uncertainty. A sensitivity analysis is commonly used for this purpose.

A sensitivity analysis determines the importance of individual variations in model inputs with

respect to a model output. A variable is sensitive if a small variation causes a disproportionately

large change to an outcome. In building performance simulation, a sensitivity analysis identifies

and ranks sensitive variables in a building model using a simulation objective, such as energy

consumption. A variety of suitable methods exist to conduct a sensitivity analysis. Regression

analyses, such as standardized regression coefficients (SRC) (Saltelli et al., 2000), attribute sen-

sitivity coefficients to model inputs by building a regression model of uncertainty results. The

Morris method (1991) determines which variations are: (i) negligible, (ii) linear and additive,

or (iii) non-linear or involve interactions with other factors. The Morris method uses two sta-

tistical quantities, the mean and standard deviation, calculated from a Morris design sampling

strategy (Saltelli et al., 2008), as sensitivity measures. These quantities are calculated by using

a sampling strategy of many local sensitivities. The mean represents the overall influence of the

input on the output. The standard deviation estimates the ensemble effects of input variations

on the output. A variable with a small mean but large a variance indicates the influence of non-

linear couplings between other variables is significant. The Sobol method (1993) attributes the

variance in a model’s output to its parameters and their interactions. This method calculates

the first order, total order and second order sensitivities and reports confidence intervals for

each factor. Other techniques such as Fourier methods, one-at-a-time methods are applicable to

building energy research (Tian, 2013).

An optimization algorithm may be used to extract performance variations from the solution

space for an uncertainty analysis. The use of optimization approaches to explore and identify

variations from the energy model solution space is a departure from other optimization studies

where algorithms primarily identify optimal designs. The role of optimization algorithms in the

paper are to map out variable couplings and build plausible variation scenarios. Although several

families of optimization algorithms exist, one well studied optimization approach in building

simulation is the Genetic Algorithm (GA), from the Evolutionary Algorithm (EA) family. GAs

have become popular due to their ease of implementation and proven ability to solve multi-
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modal and multi-objective problems. Computational pseudo-evolution was first demonstrated by

Goldberg (1989) using biological inspirations. Performing genetic operations, such as mutations

and crossovers, on representations in combination with selection operators emulate the ‘survival

of the fittest’ found in biological evolution. For further information on optimization techniques

for building simulation refer to the extensive review presented by Evins (2013).

Before describing the methodology and case study, a literature review of relevant previous

research is presented.

1.3 Literature Review

This section describes previous research which influenced the proposed methodology as pre-

sented in this paper. Previous work focused on uncertainty analysis to improve: (1) information

for decision making; (2) confidence in simulation results; and (3) sensitivity and uncertainty

techniques for building simulation.

Uncertainty analysis techniques can improve decision making during building design. De Wit

(2001) demonstrated the potential for thermal comfort uncertainty estimation in a naturally

ventilated office building. De Wit and Augenbroe (2002) showed the effect of variations in heat

transfer and climate variables on thermal comfort and energy consumption to facilitate ratio-

nale design decisions under uncertainty. Hopfe et al. (2007) showed the effect of variations to

physical parameters in an energy model on heating and cooling energy use in relation to un-

met building loads. Heiselberg et al. (2009) identified a few influential design parameters using

sensitivity techniques to optimize a building’s sustainability. Breesch and Janssens (2010) esti-

mated the performance of natural ventilation strategies using building energy simulation while

considering uncertainties using a MCA with SRC. Domı́nguez-Muñoz et al. (2010) showed the

significance of uncertainty on peak cooling load calculations under various weather and building

use scenarios using a Monte Carlo analysis with SRC. They showed that peak load uncertainty

was sufficiently addressed using three variables related to charging and discharging of thermal

mass. Tian and de Wilde (2011) proposed a methodology to model uncertainties in building en-

ergy consumption and greenhouse gas emissions under climate change projections. A case-study

showed that heating energy consumption is likely to decrease and cooling energy consumption

will increase. Hu and Augenbroe (2012) used a MCA to estimate the effect of uncertainty in

the power systems of an off-grid house on thermal comfort and power reliability. Rysanek and

Choudhary (2013) explored the technical and economic uncertainties of building retrofits using

optimized greenhouse gas emissions and a cost criteria. The study provided decision-makers in-

formation for identifying retrofit opportunities in existing buildings under various uncertainties.

Wang et al. (2012) explored uncertainties in climate, physical and mechanical system parameters



January 25, 2018 8:22 Journal of Building Performance Simulation jbps-tf

Journal of Building Performance Simulation 5

on the energy consumption of an office building. They found that mechanical system operations

significantly influenced energy consumption. Booth and Choudhary (2013) identified a limited

number of energy saving measures using uncertainty techniques to cost-effectively reduce GHG

emissions and energy consumption in the UK housing stock.

Another area of research was improving simulation results by including confidence factors

using uncertainty and sensitivity analysis. Aude et al. (2000); Borchiellini and Fürbringer (1999)

utilized uncertainty and sensitivity techniques to validate energy models. Purdy and Beausoleil-

Morrison (2001) calculated the sensitivity of variations to individual building model inputs to

improve modelling decisions by varying each input independently using a stationary building

model. Struck et al. (2006) utilized the Morris method with linear partial correlation coefficients

to estimate the importance of material properties variations on annual cooling and heating

loads. Hopfe et al. (2007) compared the results of four building performance simulation tools

using uncertainty analysis. Corrado and Mechri (2009) used the Morris method to estimate

the sensitivity and uncertainty of building energy rating systems. Spitz et al. (2012) applied a

Monte Carlo uncertainty and sensitivity analysis using 139 physical parameters within an energy

model. The Sobol method attributed 6 significant variables to uncertainty propagation. Hopfe

and Hensen (2011) applied a MCA and sensitivity analysis using step-wise and rank regressions

to three groups of uncertain parameters: (i) physical, (ii) design, and (iii) scenarios. Burhenne

et al. (2010) analyzed uncertainty associated with model parameters of a building using a solar

thermal collector for heating and domestic hot water.

Additional research has been aimed at improving uncertainty analysis for building simulation

problems. Lomas and Eppel (1992) recommended differential sensitivity methods for sensitiv-

ity predictions in building thermal simulation programs rather than stochastic sensitivity ap-

proaches. Macdonald (2002) described how to embed uncertainties within a simulation tool’s con-

servation equations using a differential and factorial analysis (Macdonald and Clarke, 2007; Mac-

donald and Strachan, 2001). De Wit (2001) used the Morris method to identify and rank which

variations contributed to uncertainty in building energy model outputs. Macdonald (2009) rec-

ommended about one hundred samples for a MCA, independent of the number of model inputs,

to estimate the mean and variance of the outcome distribution. O’Brien et al. (2011) extracted

one-way and two-way interactions from a net-zero energy house model. Heo et al. (2011, 2012)

updated PDFs using a Bayesian approach in the calibration of an energy model for energy per-

formance contracts. Previous studies estimating the effect of uncertainty in building simulation

indicated that few input parameters affect energy performance outcomes significantly (Corrado

and Mechri, 2009; Déqué et al., 2000; Hopfe and Hensen, 2011). In one study, about 100 of the

1009 input parameters of a building model had statistical significance (Eisenhower et al., 2011).
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Brohus et al. (2012) quantified the uncertainty of building energy consumption using stochastic

differential equations and applied the method to an arbitrary number of loads and zones in a

building. Burhenne et al. (2013) proposed a cost-benefit analysis using a MCA with Monte Carlo

filtering to find which variables drive model uncertainty. Infiltration was identified as having the

largest effect on the solar fraction of a solar thermal system. Sun et al. (2013) defined uncertainty

quantification of micro-climate variables affecting building simulation results.

There is limited research exploring the robustness of a building design around a performance

criterion. For example, Hopfe et al. (2012) added uncertainty functionality to an EA to estimate

the robustness of building performance simulations. Jelle et al. (2013) developed a robustness

classification system for materials, assemblies and buildings. Hoes et al. (2011) proposed an

EA selection operator to rank potential designs based on their robustness to uncertainties in

occupant behaviour.

To explore influences of input variations for a performance criterion such as NZE requires

experimental evidence or expert knowledge. Associating arbitrary PDFs to model inputs, such

as normal or triangle distributions, offers no indication that sampled designs represent or fall

within the desired performance range. To overcome this problem, optimization techniques ex-

tracted PDFs from the solution space of acceptable designs. A MCA was selected for uncertainty

propagation. Based on the recommendations of Macdonald (2009), a random sampling method

was selected for the MCA to allow for an unbiased sampling of the solution space. Most of the

sensitivity techniques used in literature were not suitable to extract and rank the relative im-

portance of variation combinations to model inputs while retaining a performance criterion such

as NZE. Based on the reviewed papers, only Monte Carlo Filtering techniques using regression

analysis met this restriction. However, Monte Carlo Filtering is only suitable to explore first

order effects (Saltelli et al., 2008). Thus a new technique is proposed in this paper to explore

first and higher order effects.

2. Methodology

This section proposes a methodology to estimate the effect of variations about a performance

criterion. In a later section, the methodology is used to identify system level variations which

most greatly affect the net-energy consumption of a NZEH.

To accomplish this, the methodology required the following distinct steps: (i) an optimization

training dataset was formed using an optimization algorithm, (ii) discrete PDFs were created

from this dataset for designs which satisfied the NZE performance criterion, (iii) new designs were

created from independent random samplings of these PDFs and simulated using an objective
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function (due to system level effects, not all of these samplings resulted in NZEHs), (iv) a

back-tracking search identified the variations responsible for non-NZE compliant samples.

The methodology is divided into three sections described by the following components: (i) cre-

ation of optimization dataset using an Evolutionary Algorithm and extraction of PDFs, (ii) a

Monte Carlo analysis using samplings of discrete PDFs, and (iii) importance factor calculations

using back-tracking searches.

2.1 Formation of PDFs from an Optimization Training Dataset

This section describes the steps required to build PDFs from a training dataset built using an

optimization algorithm; this training dataset will be used within a MCA.

The use of optimization data is a reasonable approach to build PDFs. The reasons for using

optimization data to build PDFs are: (i) algorithms can systematically seek out variable limits

and combinations which result in high-performing designs; (ii) algorithms converge towards

optimal variable combinations and the frequency of PDFs is calculated from the frequency

of optimal solutions in the dataset; and (iii) the shape of distributions and optimal variable

combinations is a property of the solution space and not the algorithm search technique.

The steps, summarized in Figure 1, are as follows: (i) model formation, (ii) discretization

of variables, (iii) formation of optimization training dataset using a customized evolutionary

algorithm (Bucking et al., 2010), and (iv) extraction of PDFs for each model variable from

compliant designs in the optimization training dataset. These steps are described in greater

detail below.

Before proceeding, it is assumed that a model exists to evaluate the performance criterion.

Simulation of this model allowed for comparisons of design performance.

The methodology requires discrete variables. This step is beneficial as it improves the conver-

gence properties of the optimization algorithm. Furthermore, the resolution of most variables

in building applications is finite in application. Although continuous parameters would result

in higher resolution estimates of variability, they require additional binning which is sensitive

to bin size. Thus, the methodology requires that appropriate design parameter increments be

selected.

In a MCA, attributing representative distributions with physical interpretations to the input

parameters of the model is difficult. There is no evidence that samplings of common distribution

functions such as normal or triangle distributions will represent a performance criterion or fall

within a desired performance range. To overcome this difficulty, a training dataset was utilized

based on searches from an optimization algorithm.

Optimization algorithms identify which sets of design parameters resulted in a NZEH. The se-
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Figure 1. Formation of PDFs from the optimization dataset

lection of the optimization tool will not affect the training dataset if the algorithm can optimize

large solution spaces involving interacting variables and pathways leading to optimal regions

can be queried from a database. For the case study, a previously developed evolutionary algo-

rithm (Bucking et al., 2013) navigated the design space. Training data was built by running

the optimization tool, starting with a randomly selected initial population, at least N times for

M generations using a population of P designs to approach optimal landscapes from different

directions. Wright and Alajmi (2005) suggested a population size, P , of 10 to 15 is appropriate

for most building simulation applications. The selection of the number of generations, M , is

problem specific and must be large enough to allow for convergence to global optimums. Finally,

repeating optimization runs, N , at least 20 times is a sufficient sample size of optimization re-

sults to build PDFs. Therefore, the procedure requires N ·M ·P simulations to build the training

dataset. After navigating the design space, the training dataset was formed by selecting a subset

of designs from the database which equalled or exceeded a specified performance criterion.

A SQLite database (SQLite, 2012) stored data originating from the optimization tool; SQL

queries formed the training dataset. SQLite allows for concurrent writes from simultaneous

simulations originating from multi-core and distributed computers. To save computation time,

a database query confirmed if a set of parameters has yet to be simulated before calling the
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simulation tool. SQL queries allowed for the quick recollection of design parameter sets which

exceeded the NZE performance criterion.

PDFs were extracted by: (i) selecting all combinations of variables that equalled or exceeded

the NZE performance criterion from the training dataset, (ii) counting the number of occurrences

of each discretized interval, and (iii) normalizing the sum of counts to equal one. For the case

study, the performance criterion was NZE or better, i.e. all building designs where the on-site

renewable energy generation equalled or exceeded on-site energy consumption over one year. To

aid in visualizing the limits of and weightings of PDFs, kernel density functions (Scott, 1992)

smoothed and interpolated the data, see Figure 2. However, discrete probabilities were used for

samplings in the MCA.
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Figure 2. Kernel density function fitted to discrete probabilities of one variable

The extraction of PDFs from the training dataset ensured that all variable distributions were

representative of NZEHs. An immediate benefit is the identification of parameter limits and

most probable values for each variable. This is discussed more in the results section. Due to

variable couplings, the sampling of a set of trained PDFs may not result in a NZE compliant

design. This became evident if the Monte Carlo samplings from trained PDFs resulted in some

non-NZE compliant designs. In fact, by intentionally sampling model variables as though they

were independent variables indirectly identifies non-linear effects and inter-variable interactions

which cause non-NZE compliant designs.

The optimization dataset offered many insights into variations which caused a performance

criterion to be exceeded. Using the trained PDFs as an input, a Monte Carlo analysis enabled

the exploration of model variations around this performance criterion.

2.2 Monte Carlo Analysis

A Monte Carlo analysis was selected to identify the global effects of variations on the previously

defined PDFs. A MCA does not require modifications to the model and can directly use the

trained PDFs from the optimization training dataset for samplings. Monte Carlo analyses are
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commonly referred to as uncertainty analyses since they estimate the cumulative effect of sam-

pling uncertain input distributions. For this paper, a MCA conducts a variability study since

the input distributions represent parameter sets of NZE buildings and not physical uncertainties

in model inputs.

Figure 3 summarizes the steps required to estimate the global variability of a model. A random

sampling technique of trained PDFs was used for the MCA, based on the recommendations of

previous studies comparing sampling methods (Lomas and Eppel, 1992; Macdonald, 2009). This

methodology used a Monte Carlo sample size of 1000. This was ten times larger than previously

recommended by Macdonald (2009). Larger sample sizes helped to explore the effect of sample

size on importance factor convergence as discussed in section 2.3. In a MCA, larger sample sizes

tend to yield more normal distributions, due to the central limit theory of statistics. Otherwise,

they do not affect Monte Carlo outcomes.
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Figure 3. Monte Carlo analysis

Monte Carlo methods rely on the sampling of predefined input distributions to estimate the

cumulative variability of a model. Data points are formed by simulating samplings using a per-

formance objective. The binning of all sampled data points forms an outcome distribution which

represents the cumulative effect of input variability on the model output. The expected varia-

tion within a confidence interval, typically 95%, can be extracted from the outcome distribution

and indicate the importance of potential variations. Regions of the outcome distribution that

result in unacceptable performance are of particular interest. However, the MCA is unable to

identify which variations to model inputs cause non-compliant Monte Carlo samples. A separate

back-tracking analysis is proposed for this purpose.

2.3 Calculation of Importance Factors using Back-tracking Searches

A back-tracking search ranked the relative importance of variations to model inputs for Monte

Carlo samplings that were non-NZE compliant. The proposed back-tracking search was created

for the requirements of this paper. This search identifies input variations which caused non-

compliant Monte Carlo samples.

In this section, importance factors are introduced to represent the relative significance of

variations to each variable affecting a performance criterion. A variable with an importance
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factor of zero indicates that variations to this variable do not affect the performance criterion.

The sum of all importance factors equals one; thus, each factor is the relative contribution of

each variable to unexpected changes in the performance criterion.

Figure 4 shows a back-tracking search using a simplified example.
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Variable Order of Steepest Descent

Figure 4. Simplified back-tracking search

A back-tracking search identifies the order in which each variable should be changed to result

in the steepest objective function gradients from a selected design, A, to a known reference

design, B. In Figure 4, starting from the initial design, A, three potential variable changes are

tested. The variables, x1, x2, x3, are changed from the value found in the selected design to the

value known in the reference design. Thus three new intermediate designs, C,C1, C2, are created

and evaluated using the objective function. The variable x3 resulted in the steepest change in the

objective evaluation and is identified as the variable with the highest importance as listed in the

x-axis. The objective function gradient from design A to design C is recorded. Now, the variable

x3 can be excluded from the remaining back-tracking searches. Starting from the intermediate

design, C, the variable x2 with the next steepest gradient is identified for design D. This process

is repeated until all variables of design A are back-tracked to design B.

A back-tracking search requires a reference design. Selecting the optimal design, a positive

NZEH with maximum production, as a reference point ensures that the extraction of steep-

est objective function gradients is consistent across the entire solution set. This is because the

optimal design is unique for a single objective optimization problem. Furthermore, using the

optimal design as a reference point also ensures that back-tracking searches identify all influen-

tial variations in the solution space. Note that the back-tracking of incremental improvements

of the initial design to the reference design is equivalent to the back-tracking of incremental

degradations of the reference design to the initial design.
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Figure 5 shows the method for calculating importance factors using back-tracking searches.

Designs of interest, shown as shaded region in histogram, refers to candidate building designs for

the back-tracking searches, i.e. designs which are non-NZE compliant. To calculate importance

factors, using each design of interest (j = 1, · · · ,M): (a) perform a back-tracking search from

the design of interest to the reference building to identify steepest performance gradients and

incremental performance improvements for each variable change; (b) calculate local importance

factors by dividing the incremental objective function gradient of each variable (Egrad i,j where

i = 1, · · · , N) by the difference in the objective functions between the design of interest (EDOI)

and the reference building design (ERef ), see equation 1; (c) continue to the next design of

interest and repeat from step (a) until all non-NZE compliant designs have been back-tracked;

finally, (d) calculate and rank global importance factors by normalizing all local importance

factors calculated in steps (a–c), see equation 2. The sum of global importance factors for all

variables should be equal to one. These factors are global in the sense that they represent the

average effect of variations on non-compliant Monte Carlo samples.
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(1)
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Figure 5. Calculation of importance factors using back-tracking searches

To investigate if the back-tracking of all designs of interest were required, a convergence

analysis of importance factors was performed. After back-tracking each additional design of

interest, the average of all local importance factors for each variable was recorded. The calculation

of importance factors converged if the inclusion of results from additional back-tracking searches
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does not change the average of local importance factor for each variable. This characteristic

is important in understanding how many back-tracking searches are required to confidently

calculate global importance factors.

Importance factors have the following advantages: (i) they identify, rank and give the relative

importance of changes to influential variables using a performance criterion, (ii) they identify

the significance of first order and second order effects, (iii) they are generalized for a set of design

considerations and climate zone, and (iv) they estimate the impact of variations for Monte Carlo

samplings which unexpectedly do not equal or exceed a performance criterion.

Important factors have several useful properties. In addition to identifying which variations

can cause large deviations from the NZE target, it is possible to identify the significance of

primary and secondary effects of variations. Global importance factors, or averaged local im-

portance factors, determine the overall influence of the variable on the output. The standard

deviation of local importance factors estimates the ensemble effects of variations. Ensemble ef-

fects are caused by non-linearities and/or interactions with other variables. An importance factor

with a large variance indicates that the effect of variations is strongly affected by the values of

other parameters. By contrast, low values imply that the effect is almost independent of other

sampled parameters. Note that primary effects are de-emphasized in this methodology since

back-tracking searches are intentionally conducted on designs with sufficient system-level inter-

actions to cause non-NZE building designs. Similar to the Morris method (1991), the mean and

standard deviation of importance factors can be plotted against each other to visualize primary

and secondary effects.

The following section presents a case study to demonstrate the proposed methodology.

3. Case Study

The proposed methodology was demonstrated using a variability analysis for a NZE house.

Rather than creating a hypothetical building, a house model was modified from a previous

study (O’Brien, 2011). The model, developed in EnergyPlus, was calibrated using monitored

data from an occupied near-NZEH located in Eastman, Québec (Doiron, 2010; Doiron et al.,

2011). The two-story ÉcoTerra house was the first of 15 houses completed under the Canada

Mortgage and Housing Corporation EQuilibrium Housing Demonstration Initiative. Alouette

Homes prefabricated the home and Natural Resources Canada, Canada Mortgage and Housing

Corporation, and Hydro Québec partially funded the project. The Canadian Solar Building

Research Network provided research and development support. A balance of passive solar design

strategies, roof-top photovoltaics and a geothermal heat-pump provided on-site renewable energy
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generation. For this case study, the primary energy factor associated with electricity from the

grid was not considered since the site-NZE definition was selected (Torcellini et al., 2006).

This case study used twenty-six discrete variables, summarized in Table 1. All variables can be

considered as design/construction or operation variables (including human factors). For example,

in many cases, the orientation and aspect ratio can both be selected and the house can be

designed and built to a certain air-tightness (defined by infiltration). Similarly setpoints can be

considered as design or operation parameters, or if modified continuously by the occupants, they

are an occupant factor parameter. Variable descriptions are shown for the south orientation only;

also, the PV slope is equal to the roof slope since the house has a building-integrated photovoltaic

system that covers the south-facing roof. Design of experiment techniques (Goos and Jones,

2011) and previous studies (Charron, 2007; O’Brien, 2011; Verbeeck, 2007; Wang, 2005) aided in

identifying influential variables. The performance objective selected was the net-annual electricity

consumed (Net) during a typical meteorological year, i.e. the energy balance of building energy

consumption with renewable energy (RE) generation, see equation 3. Negative values of net-

energy indicate a greater production of electricity compared to consumption. Thus, satisfying or

exceeding the NZE criterion can be stated succinctly as Net ≤ 0 or RE ≥ Consumption.

Net = Consumption − RE (3)

Table 1. Sample of influential model variables for a NZEH

Variable Units Min. Max. No. Steps Description

aspect – 0.7 2.2 16 Aspect ratio (south facing width to depth ratio)

azi degrees -45 45 32 Building orientation/azimuth

wall ins m2K/W 3.5 13.0 8 Effective resistance of wall insulation

ceil ins m2K/W 5.6 15.0 8 Effective resistance of ceiling insulation

base ins m2K/W 0.0 7.0 8 Effective resistance of basement wall insulation

slab ins m2K/W 0.0 2.3 4 Effective resistance of slab insulation

heating sp ◦C 18 25 4 Heating setpoint

cooling sp ◦C 25 28 4 Cooling setpoint

infil ACH 0.025 0.179 8 Natural infiltration rate

occ loads % CADavg 50 80 8 Occupant loads (percent of Canadian average consumption)

ovr south m 0.00 0.45 4 Width of Southern Window Overhangs

pv area % 0 90 8 Percent of PV area on roof

pv eff % 12 15 4 PV efficiency

roof slope degrees 30 47 8 South facing roof/PV slope

wwr s % 5 80 8 Percent of window to wall ratio, south (also N,E,W)

GT s – 1 4 4 Glazing type, south (also N,E,W)

FT – 1 2 2 Window Framing Types (1:Wood, 2:Vinyl)

slab th m 0.1 0.2 8 Concrete slab thickness

vwall th m 0.00 0.35 8 Concrete wall thickness (basement)

zone mix L/s 0 400 4 Air circulation rate between thermal zones

The combined coefficient of performance (COP) of the Ground Source Heat Pump (GSHP),

circulation fans, pumps and auxiliary heaters was specified from seasonal-averages of monitored

data. Since the heating system uses a GSHP, the COP does not vary significantly over an annual

period. Thermal energy for heating was converted into electrical energy by using a COPH of 3.77.
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Similarly, to convert cooling loads into electrical energy a COPC of 2.77 was used. Thus, any

reference to energy consumption using units of kWh refers to electrical energy. Electric lighting

ensured that a minimum illuminance of 200 lx was present in all occupied spaces regardless

of the window-to-wall ratio. A heat recovery ventilator with an efficiency of 60%, taken from

manufacturer specifications, maintained the ventilation rate at 0.3 air-changes per hour in all

occupied spaces. Roller shades were automatically deployed if exterior solar radiation on the

exterior window surface exceeded 150 W/m2 and if exterior temperature on the window exceeded

20 ◦C. These values ensured that blinds were closed if there was potential for zone overheating.

Utility dependencies were not considered because a site-NZE definition was used.

An evolutionary algorithm minimized the annual net-energy consumption of the house. The

algorithm used a population size P of 10 with 30 generations (M) within each optimization run.

To ensure that the optimal landscape was approached from different angles, 20 optimization

runs (N) were executed using randomized initial populations; thus, 6000 EnergyPlus simulations

were required (P ·M ·N = 6000). Approaching the optimal landscape from different pathways

ensured that the extracted PDFs represented a variety of interactions present in the building

model.

Energy related occupant behaviour is an important, but challenging aspect to incorporate into

a building simulation. Although occupant behaviour is not actually a design variable, it was in-

cluded in the case study due to its influence on energy consumption. For example, energy-related

occupant behaviour accounted for 37% of ÉcoTerra’s gross energy consumption (Doiron et al.,

2011). Ideally, monitored data from a large sample of NZEHs would be preferred to estimate

energy related occupant behaviour for a given location. Since such data was not available, usage

scenarios were created from published data. Previously published hourly occupancy, domestic

hot-water (DHW) loads, appliance and lighting usage profiles were used (Armstrong et al., 2009).

These were determined from monitored data specific to Canadian housing stock. The amplitude

of energy-use profiles were normalized to match published consumption data for lighting, DHW,

and appliance loads (NRCan-OEE, 2009). In 2009 Canadians used, on average, 95 kWh/m2 of

total energy for lighting, DHW and appliances. An assumption was made that an above average

user of lighting, was also an above average consumer of DHW and appliance loads and vice

versa. The lower bound of 50% for DHW, appliance and lighting loads was selected based on

monitored data from the ÉcoTerra house.
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4. Results

Figure 6 shows the PDFs extracted from the optimization training set. Table 1 provides longer

descriptions of short-form notations. The probabilities of each variable, shown in the y-axis, are

normalized to one.

50 55 60
occ_loads [% CAD_avg]

72 74 76 78 80
pv_area [%]

38 42 46 50
roof_slope [degrees]

16 18 20 22 24
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0 20 40 60 80
wwr_s [%]

−40 0 20 40
azi [degrees]

0.00 0.10 0.20
infil [ACH]

0.5 1.5 2.5
aspect [−]

13.8 14.2 14.6 15.0
pv_eff [%]

4 6 8 12 16
wall_ins [m2 K/W]

0 10 20 30 40
wwr_n [%]

24 25 26 27 28 29
cooling_sp [degC]

0 10 20 30 40
wwr_e [%]

0 10 20 30 40
wwr_w [%]

0.0 0.2 0.4 0.6
ovr_south [m]

0.0 0.1 0.2 0.3 0.4
vwall_th [m]

Figure 6. Sample of PDFs extracted from the training dataset

Each PDF resulted in a NZE compliant design given a specific set of other variable combina-

tions. Two-dimensional contour maps are more appropriate to visualize discrete combinations

of variables that resulted in NZE compliant designs. For example, Figure 7 shows a probability

contour plot, based on several near-optimal designs from the training dataset, for the south-

ern window glazing to wall ratio (WWR) and for the amount of wall insulation. The shaded

region shows variable combinations that resulted in a NZE compliant home for this particular

case study (RE ≥ Consumption). Shading indicates the probability that the combination of

parameters appeared in the training dataset; darker shading indicates an increased probability

of occurrence.

One important observation from Figure 7 is that some combinations of wall insulation and

WWR preferentially appeared in clusters due to coupling; for example, a range of southern

WWRs of 31.8–47.9% correlated with wall insulation levels of 6.9–8.3 m2K/W indicating that

these variable pairings has a high probability of occurrence in the NZEH training dataset. Addi-

tional pairings can be found for higher wall insulation and lower southern WWRs. This important

result demonstrates two very different approaches to design a NZEH: (i) super insulated walls

with more variable southern WWR, and (ii) a design with relatively lower wall insulation and

appropriately sized southern WWR for passive solar design. Both are valid design strategies

to achieve the NZE performance criterion. This result quantifies these two different approaches

that until now were described qualitatively: super insulate and be conservative in window areas
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Figure 7. Probability of occurrence for southern WWR and wall insulation parameters resulting in homes that are NZE

compliant

versus insulate well—but not excessively—and use larger window areas. The second approach

was used in the design of the ÉcoTerra house, but the first approach was used in some of the

other EQuilibrium houses.

Once the PDFs were extracted from the optimized training dataset, a MCA was performed

which resulted in a histogram of the accumulated effects of design variations, as shown in Fig-

ure 8. If all variables were weakly interacting, the sampling of trained PDFs from NZE compliant

design in a MCA would result in all NZE compliant design. However, the shaded area in Fig-

ure 8 identifies designs where renewable energy generation did not offset the building energy

consumption. This is due to variable interactions and non-linearities. The histogram satisfied

a hypothesis test for a long-tail distribution (Venables and Ripley, 2002). Long-tailed distribu-

tions represent rare events—meaning that deviations from NZE require more than one variable

change. The back-tracking analysis proposed, described in section 2.3, identifies the variations

responsible for long-tail events.

If one was to approximate a mean and variance, assuming a normal distribution, the expected

net annual electricity consumption given all variations would be −400 ± 850 kWh using a 95%

confidence interval. Negative values of energy indicate the net-production of electricity. For

this case study, the combined variations is enough to cause building energy consumption to

be larger than renewable energy generated in 20.4% (204/1000) of sampled designs, i.e. RE <

Consumption.

Importance factors were calculated for input variables responsible for NZE non-compliance.

As shown in Figure 8, 20.4% of the sample was non-NZE compliant. Importance factor calcu-

lations involved back-tracking each variable to find which variation caused the largest change

in net-energy consumption relative to the reference building, see Figure 9 for the result of one
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back-tracking search. The reference building used was the optimal design found from the training

dataset. The relative importance for each variable was calculated by normalizing each incremen-

tal improvement by the performance difference between each design of interest and the reference

building. EnergyPlus simulations determined the incremental variable improvements, the per-

formance of the design of interest and reference building.

Consider the back-tracking of a particular design of interest, as shown in Figure 9. Note

the net-energy consumption of the design of interest was 374 kWh. A positive NZEH with

maximum production was used as the most desirable outcome, and therefore the performance

of the reference building was -1446 kWh. The steepest gradient of 797 kWh was obtained by

varying the southern WWR from a starting value of 5% to 48.2%, see Table inside Figure 9. The

local importance factor for variable wwr s was calculated to be 797/(374 + 1446) = 0.4381. A

local importance factor of 0.4381 indicates that the variation to southern WWR is responsible for

about 44% of the net-energy consumption difference of this particular design of interest relative

to the optimal reference building.
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heating_sp Heating Setpoint 19 18 °C -317 0.1741

occ_loads Occupant Loads 54.0 50.0 % CAD_avg -292 0.1605

infil Infiltration 0.113 0.025 ACH -226 0.1241

wwr_n WWR North 25.0 5.0 % -92 0.0505

Back-tracking of influential variables

Figure 9. Back-tracking of one NZE non-compliant design to the reference building

Table 2 presents the influential global importance factors for 204 designs of interest. Recall that
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global importance factors refer to the averaging of all local importance factors; local importance

factors were calculated using a single back-tracking search. The average net-change presented in

this table is the expected change in net-energy consumption found in the back-tracking search

for all 204 designs.

Table 2. Importance factors for influential variables

Variable Units Description

Mean

Importance

Factor

Importance

Factor

Deviation

Average

Net-Change

(kWh)

occ loads % CADavg Occupant Loads (percentage of Canadian

Average consumption)

0.1420 0.1258 253

pv area % Percent area of PV on roof 0.1104 0.1490 200

roof slope % Roof slope 0.1043 0.1627 197

heating sp ◦C Heating setpoint 0.0993 0.1233 182

wwr s % Percent of window to wall ratio, south 0.0868 0.1280 154

azi degrees Building orientation/azimuth 0.0828 0.1200 150

infil ACH Natural infiltration rate 0.0705 0.0931 129

pv eff % PV efficiency 0.0445 0.1238 82

Table 2 is applicable to other NZEHs with similar variables, RE generation technology, site

and situational constraints and climate type as the case study. For different studies, users should

repeat the proposed methodology. Calculating the effect of combinations of variations is achieved

by adding the average net-changes. This linear assumption may approximate some local non-

linear phenomena but is generally acceptable since net-changes originated from the solution

space.

Figure 10 shows a plot of importance factor mean and standard deviation. Recall that the

mean importance factor represents the overall influences of each variable on the non-compliant

MC samples shown in Figure 8. The importance factor standard deviation represents the effect

of non-linearities or inter-variable couplings of each variable. This figure shows three clusters

of importance factors: (i) cluster A called influential variables, (ii) cluster B, variables with

intermediate influence, and (iii) cluster C, non-influential variables. Based on this plot, only 8

of the 26 variables examined were considered influential.

Figure 11 shows the convergence characteristics for the five most influential variables over the

back-tracked home designs found to greatly influence the NZE objective. It was found that the

calculation of importance factors converged after back-tracking approximately 150 of the 204

building designs. For instance, the value at 50 building designs is the average importance factor

calculated for back-tracked building design no. 1 through no. 50. Similarly, the value at 100

building designs is the average of importance factor from design no. 1 through no. 100.
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5. Discussion

This paper proposed a methodology to identify influential variations around a performance crite-

rion. A net-zero energy house case-study demonstrated the methodology. Although the method-

ology is focused towards NZE buildings, it is applicable to other high performance building

studies. The remainder of this section discusses results from the case study and areas of future

work.

The application of the methodology to a NZEH identified several design restrictions specific to

the case study. From the set of PDFs shown in Figure 6, limits in variable ranges that resulted in

NZE were identified. For instance, if occupants consumed more than 60% of Canadian national

electricity averages for appliance, DHW and lighting loads, achieving NZE was not practically
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possible, i.e. PDFs equalled zero. Other similar design restrictions were noted for the building

azimuth angle and PV sizing. For example, NZE compliance is difficult to achieve when the main

solar collecting surface of the building is oriented further than 30 degrees from due south. Note

that these results are for a particular location and a set of modelling assumptions but they are

expected to be valid for similar climatic conditions. For this case study, cut-offs originated due to

a limited amount of roof space for PV-based electricity generation. Regardless, Figure 6 shows a

remarkable variety of design combinations with the potential to reach NZE. Figure 7 identified

that some combinations of wall insulation and WWR preferentially appeared in clusters. For

example, a range of southern WWRs of 31.8–47.9% correlated with wall insulation levels of 6.9–

8.3 m2K/W . This result represents two very different design approaches to a NZEH: (i) super

insulated walls with more variable southern WWR, and (ii) a design with relatively lower wall

insulation and appropriately sized southern WWR for passive solar design. Identifying variable

restrictions and optimal combinations of variations in the early design stages of a NZE building

will facilitate the quantitative design process.

The convergence of importance factors exhibited an asymptotic relationship regardless of the

order of the back-tracked population (see Figure 11). The convergence analysis indicated that at

least 150 back-tracking searches were required to build confident estimates of global importance

factors.

In the case study, importance factors indicated that only a few design variables associated with

a NZEH significantly affect net-energy consumption. In fact, only thirty percent of the variables

examined in the case study were influential. Energy related occupant behaviour (occ loads) was

the most influential variable. Occupant behaviour carried more significance than design variations

affecting heating and cooling loads due to the COP effect of the heat pump which reduced

electricity used by 1/COP. Monitored data from a set of NZEHs would be more appropriate

to extract the importance of occupant behaviour. For this study, ranges of occupant behaviour

were based on monitored data of a NZEH and average energy consumption data for Canada.

Since the occ loads importance factor was based on these assumptions of occupant behaviour,

these results are applicable to the case-study only.

The clustering analysis shown in Figure 10 shows the primary and higher order effects of

variations. Variations causing significant higher order effects have larger standard deviations.

Variations related to renewable energy generation, particularly, the roof slope (roof slope), PV

efficiency (pv eff), building orientation (azi) and percentage of roof coverage with PV (pv area),

were the next most influential variables in the case study. Note that the azimuth and roof

slope are factors in energy generation since PV is integrated into the roof surface. Although the

significance of PV related variables is not surprising given that roof-based PV being the only
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source of renewable energy used to offset energy consumption, the higher order relationships

between clustered variables is not immediately evident. Results suggest that the assurance of

PV specifications should have equal or greater prioritization than envelope air-tightness. A key

advantage of the proposed methodology is the quantification of primary and higher order effects

to improve the robustness of a design and better predict building performance.

6. Conclusion

This paper proposed a methodology which provides new information to designers regarding how

robust their performance-based design is to key parameter variations. Importance factors rank

and quantify the effects of first order and second order variations of each aspect of the design.

This added simulation step can inform designers on how robust their design is to variations in

usage and construction parameters and aids in understanding potential discrepancies between

predicted and realized building performance. The goal of the paper is to present a methodology

which aids designers in understanding the potential for important parameter variations to affect

a performance criterion (NZE in the case-study).

Streamlined quality assurance processes guided by importance factors can be used in the design

of high performance buildings to identify and prevent costly design mistakes before they occur.

By definition, importance factors identify which variables changes are likely to cause a non-

compliant performance level for a given climate and building type. Importance factors allow for

the prioritization of quality control to focus on the design aspects which most significantly affect

a desired performance target. Larger importance factors indicates that changes to the given

variable have a greater effect. Also, the size of the anticipated changes can be estimated, as

shown in Table 2. Similarly, in the commissioning of new buildings, importance factors could aid

in identifying and resolving the causes of discrepancies between predicted and realized building

performance.

An area for future work is to utilize PDFs and importance factors to improve energy design

guidelines by providing a scientific basis for establishing an optimal combination of design vari-

ables. Several approaches used in this paper are applicable in creating more flexible performance-

based design guides. For example, PDFs encapsulate all design parameters extracted from an

optimized solution set which result in the desired performance level. This can be useful to select

parameters which are constrained for the given location. For example, as found by the opti-

mization algorithm, Figure 6 shows that wall insulation, wall ins, must be at least 6 m2K/W

in Montréal for a house to be NZE. However, the added flexibility of recommending ranges of

individual design variables results in a new problem. As shown in this paper, combining sets
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of high-performing design variables with the assumption that the combination should result in

a high performing design is circumstantial due to influential variable linkages and couplings.

Importance factors, by definition, identify which design variable changes are responsible for such

discrepancies. From the perspective of a design guide, the smaller the importance factor of a

design variable, the more confidently it can be used in combination with other design variables.
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